
 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
 

THESIS 
 

Approved for public release; distribution is unlimited 

EVENT-DRIVEN SIMULATION AND ANALYSIS OF AN 
UNDERWATER ACOUSTIC LOCAL AREA NETWORK 

 
by 
 

Goh, Meng Chong 
 

June 2010  
 

 Thesis Advisor: Joseph A. Rice 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
June 2010 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE  
Event-Driven Simulation and Analysis of an Underwater Acoustic Local Area 
Network 
6. AUTHOR(S)  Goh, Meng Chong 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government.  IRB Protocol number ________________.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
A 

13. ABSTRACT (maximum 200 words)  
“Seastar” is an underwater Local Area Network (LAN) concept involving high-frequency acoustic modems sending 
large volumes of data from a distributed set of peripheral sensor nodes to a centralized node for data fusion. The 
notional operating range of the acoustic modems used is 500m. This research considers four candidate Seastar 
network protocols: Time division multiple access (TDMA) polling with and without Selective automatic repeat 
request (SRQ), and TDMA token ring with and without SRQ. The number of peripheral nodes, the layout of the 
nodes, and the noise level of the environment are modeled and evaluated, according to performance metrics, including 
data throughput, communications latency, and packet error rate.  It was determined that in a low-noise environment, 
the token ring with SRQ protocol delivers the most throughput of data with the minimum number of dropped packets, 
while in high-noise conditions, polling with SRQ is preferred. In addition, if data throughput is not a priority, polling 
with SRQ is advantageous. Therefore, it is recommended that a switch be implemented for adaptively selecting the 
network protocol depending on the prevailing noise conditions and the critical performance metrics. 
 

15. NUMBER OF 
PAGES  

109 

14. SUBJECT TERMS Communications network, sensor network, acoustic communications, 
undersea sensors, simulation, Seastar, Seaweb 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

EVENT-DRIVEN SIMULATION AND ANALYSIS OF AN UNDERWATER 
ACOUSTIC LOCAL AREA NETWORK 

 
 

Goh, Meng Chong 
Senior Engineer, Republic of Singapore Navy 

B.S. (Honors) in Technology with Electronics, University of London, 2003 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN ENGINEERING ACOUSTICS  
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
June 2010 

 
 
 

Author:  Goh, Meng Chong 
 
 
 

Approved by:  Joseph A. Rice 
Thesis Advisor 

 
 
 

Daphne Kapolka 
Chair, Engineering Acoustics Academic Committee 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

“Seastar” is an underwater Local Area Network (LAN) concept involving high-frequency 

acoustic modems sending large volumes of data from a distributed set of peripheral 

sensor nodes to a centralized node for data fusion. The notional operating range of the 

acoustic modems used is 500m. This research considers four candidate Seastar network 

protocols: Time division multiple access (TDMA) polling with and without Selective 

automatic repeat request (SRQ), and TDMA token ring with and without SRQ. The 

number of peripheral nodes, the layout of the nodes, and the noise level of the 

environment are modeled and evaluated, according to performance metrics, including 

data throughput, communications latency, and packet error rate.  It was determined that in 

a low-noise environment, the token ring with SRQ protocol delivers the most throughput 

of data with the minimum number of dropped packets, while in high-noise conditions, 

polling with SRQ is preferred. In addition, if data throughput is not a priority, polling 

with SRQ is advantageous. Therefore, it is recommended that a switch be implemented 

for adaptively selecting the network protocol depending on the prevailing noise 

conditions and the critical performance metrics. 
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I. INTRODUCTION 

Exploiting the underwater domain has been a challenge since the onset of the First 

World War, when the modern submarine was introduced to the world. Since then, 

technological innovation has enabled surveillance of the undersea environment. From the 

mid 20th century, wired acoustic sensors have been deployed on the seabed for 

monitoring the radiated signatures of submarines. These sensors, however, are expensive 

to deploy and maintain. With the transition into the network-centric warfare of the 21st 

century and increasing interest in littoral anti-submarine warfare (ASW), there is a 

demand for a cheaper, more rapidly deployable system to provide underwater domain 

awareness.  

 

Figure 1.   Seastar LAN within a Seaweb WAN. (After [1]) 

A. SEASTAR NETWORK 

The Naval Postgraduate School (NPS), with sponsorship from the Office of Naval 

Research, is developing the Seaweb Wide Area Network (WAN), which incorporates 

underwater acoustic modem technology. Seaweb allows a network of autonomous 

battery-powered sensors to be rapidly deployed over wide areas (10–100km2). To 

increase the density of sensors for a smaller area, a study was done by [1] in 2007 to 

consider feasibility of a local area network (LAN) consisting of short-range acoustic 
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modems capable of communicating at distances up to 500m. With its higher operating 

frequency and greater spectral bandwidth, the acoustic LAN would carry large quantities 

of data from the peripheral nodes for fusion at a central node. As shown in Figure 1, the 

fused information may then be transmitted from the Seastar central node via the Seaweb 

WAN for further uses. The acoustic LAN is named “Seastar” in reference to its 

centralized hub and spoke architecture. 

B. SCOPE OF RESEARCH 

The scope of this thesis research is to simulate candidate Seastar networking 

protocols and evaluate their operations against a set of performance metrics. This 

simulation involves representing the high-frequency acoustic modem, the spectral 

bandwidth, the operational range, and the associated data rate in an event-driven 

numerical program. 

The performance metrics include information throughput (bytes), latency 

(seconds), and dropped data rate (data packets per day) of the network compared to the 

number of nodes the network can support, layout of the network, and the ambient 

environmental noise level.  

C. THESIS ORGANIZATION 

The thesis contains seven chapters including this introduction.  

Chapter II gives an overview of the Seastar prototype short-range modem and its 

programmable functions.  

Chapter III describes the physical ocean operating environment, including the 

sonar equation and a link budget model for underwater acoustic communication.  

Chapter IV discusses the network protocols implemented in the simulation. 

Chapter V presents the simulation setup, establishes a set of performance metrics, 

and identifies various test cases to be simulated.  

Chapter VI reports the results of the simulation test cases.  

Chapter VII draws conclusions and discusses recommendations for future work.  
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II. HIGH–FREQUENCY ACOUSTIC TELEMETRY MODEM 

The concept for the Seastar network and the specification of the short-range 

acoustic modem were introduced by Kerstens [1]. As a result of that study, a high-

frequency modem was developed at the request of NPS to provide an operational 

frequency band of 35 to 55 kHz for the implementation of the Seastar network. 

The high–frequency acoustic telemetry modem is an evolution of the ATM-88X 

family of acoustic telemetry modems that have been used in the implementation of 

Seaweb. These modems provide wireless bidirectional underwater communications 

between two or more nodes, as illustrated in Figure 2.  

 

Figure 2.   Family of acoustic telemetry modems. (From [2]) 
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A. SPECIFICATION 

The general specification of the high–frequency acoustic telemetry modems are 

presented in Table 1.  

Type Seaweb Modem Seastar Modem 

Frequency Band 9–14 kHz (LF omnidirectional) 35–55 kHz (HF omnidirectional) 

Data Modulation PSK and Multi-Channel MFSK 

Bit Rate for 

Multi-Channel 

MFSK  

140 – 2400 bits/s  

 

560 – 9600 bits/s 

Processing 

Feature 

Data Redundancy 

½-rate Convolutional Coding 

Multipath Guard Period 

Average 

Transmit Power 

20 watts at power level 08 (max) @ 21 VDC 

Source Level: 183 dB re: 1 µPa @ 1 m 

Battery Capacity 400 watt-hours at max power level 08 @ 21°C 

Range 500 – 5000 m 50 – 500 m  

Table 1.   General specifications of ATM-890 acoustic telemetry modems. 

1. Frequency 

The Seastar omnidirectional transducer operates in a 20 kHz bandwidth of 

relatively flat frequency response from between 35 kHz and 55 kHz. This is a four-fold 

increase over Seaweb’s spectral bandwidth, which operates in the 9–14 kHz range. This 

should result in a higher throughput of data for the Seastar network at the expense of a 

shorter range of transmission. 
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2. Transmission Mode 

There are two modulation schemes available aboard the modem: phase shift 

keying (PSK) and multi-channel M-ary frequency shift keying (MFSK).  

PSK modulation permits the modem to transmit at a higher bit rate than multi-

channel MFSK. However, as sound propagates, the ocean environment produces a multi-

path effect, which greatly reduces the coherent nature of the PSK signal. Thus, PSK 

modulation is reserved only for transmission in the vertical column of the ocean.  

For the purpose of the Seastar network, we would only operate the modem using 

the multi-channel MFSK modulation scheme, which ensures a more robust physical layer 

for the network. With multi-channel MFSK, 32 individual pulse trains of 4-ary FSK are 

transmitted simultaneously. Thus, at any instant during data transmission, 32 out of a 

possible 128 tones are active. Jenkins [3] examines various candidate implementations of 

multi-channel MSFK modulation for Seastar.  

3. Data Reliability 

There are constraints in underwater communications, such as a slow sound speed, 

signal fading, frequency-dependent attenuation, limited spectral bandwidth, and 

multipath interference due to sea surface and sea floor reflections. These channel 

impairments are treated in greater detail in the next chapter. The modem uses three 

different methods to overcome channel effects and increase the reliability of the 

transmission. These methods involve the use of convolutional coding, multipath guard 

periods, and data redundancy. However, these methods reduce the effective bit rate or 

throughput of the transmission.  

a. Convolutional Coding 

Convolutional coding is a form of forward error correction. The modem 

uses a constraint-length-9, ½-rate convolutional coding. This allows the modem to 

recover binary information even when a few symbols are lost at the receiver. The 

effective bit rate or throughput is reduced by half. 
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b. Multipath Guard Period 

In the high multipath situations where there is significant time spread at 

the receiver, a guard period may be inserted between data symbols. If the duration of the 

guard period is the same length as the data symbols, the effective bit rate is reduced by 

half.  

c. Data Redundancy 

Data redundancy involves repeating the same data bits two or more times. 

This reduces the bit rate by half or more, depending on the number of times the data bits 

are repeated.  

4. Data Rate 

The data rate of the modem is selectable from a range of 140 bits/sec to 2400 

bits/sec for multi-channel MFSK modulation as described in Table 2. Note that these data 

rates may be increased by a factor of 2 or 4, depending on how the additional spectral 

bandwidth at high frequencies is exploited [3]. 

Setting Remarks 
02 140 bits/s MFSK repeated four times with ½-rate convolutional coding and 25 

ms multipath guard period 
03 300 bits/s MFSK repeated twice with ½-rate convolutional coding and 25 ms 

multipath guard period 
04 600 bits/s MFSK with ½-rate convolutional coding and 25 ms multipath guard 

period 
05 800 bits/s MFSK with ½-rate convolutional coding and 12.5 ms multipath 

guard period 
06 1066 bits/s MFSK with ½-rate convolutional coding and 3.124 ms multipath 

guard period 
07 1200 bits/s MFSK with ½-rate convolutional coding  
08 2400 bits/s MFSK 

Table 2.   Bit rate selection for MFSK. 

The data rate is affected by the choice of data reliability methods employed. The 

greater the protection, the higher the data reliability will be, but the lower the data rate. 

For the purpose of this thesis, we will assume 140 bits/s as the rate for utility packet 

transmission and 2400 bit/s for data packet transmission.  
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B. SPECIAL FUNCTIONS  

There are two special modem functions of particular interest to this thesis: 

acoustic ranging and transmit power.  

1. Acoustic Ranging 

A modem and its sensor packet are generally deployed by dropping the modem 

overboard from a boat or aircraft and marking the position of the point of release. 

However, depending on the currents and depth of the area, the position drifts from where 

it is dropped to where it ultimately anchors on the seabed. Therefore, there is a location 

uncertainty.  

To correct such errors, the modem can be remotely activated to measure the range 

between itself and neighboring modems in the network, by issuing an acoustic ranging 

signal as discussed by [14].  

2. Transmit Power  

While high transmit power will ensure a high signal-to-noise power ratio (SNR) 

that supports maximum transmission ranges, excessive transmit power is not desirable, as 

it will also contribute to a high reverberation level that reduces the reliability of short-

range communication. High transmit power also reduces the life of the node, as it 

consumes more battery power.  

Modem settings allow for a remote power command to set the transmit power. 

The available settings are as shown in Table 3, with the values indicating the reduction in 

power from the maximum level.  



 8

 
Setting Power Level (dB) 
01 - 21 dB (Minimum power level) 
02 - 18 dB 
03 - 15 dB 
04 - 12 dB 
05 - 09 dB 
06 - 06 dB 
07 - 03 dB 
08 0 dB (Maximum power level) 

Table 3.   Transmit power settings. 

C. OPERATIONAL SETTINGS 

This section introduces some of the modem settings used in the network 

simulations.  

1. Acoustic Response Time-Out 

The acoustic response timeout is the time during which the local modem waits for 

an acknowledgment of an acoustic command sent to a remote modem. It is computed 

from the expected round-trip time of the command, acknowledgment dialog, and duration 

of the transmitted packets. If the wait for an acknowledgment exceeds this timeout, a 

dropped packet is declared.  

2. Idle Time 

When the modem does not receive input from a source after the idle time period, 

it goes into a low-power state to conserve energy. Therefore, if the modem is accessed 

only once a day, the idle time should be set as low as possible to conserve energy. 

However, if the modem is constantly being polled, the idle time should be set longer to 

avoid the need to frequently reawaken the modem from its low-power state. The 

calculation of the latency time as a performance metric will allow us to determine 

appropriate settings for the idle time.  
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III. THE COMMUNICATION CHANNEL 

A. PHYSICAL CHANNEL 

Radio transmission in terrestrial networks is a well-studied topic resulting from 

advances in commercial telecommunication. Acoustic communication in the ocean is far 

less understood. There are many factors that impair signal reception in the ocean. The air-

sea interface and the sea bottom boundary support multipath propagation; the slow rate of 

acoustic propagation causes signal delays; the spatially and temporally varying sound-

speed profile causes convergence and divergence zones in the water column; and various 

noise sources, together with the frequency and bandwidth of the signal, cause the signal 

to become delayed, distorted and weakened.   

In the following sections, we categorize these factors that influence acoustic 

communication into a few parameters, i.e., transmission loss, ambient noise level, and 

source transmission level. By focusing on the frequency bandwidth and the operational 

range of the Seastar modem, we will apply these parameters in a link budget analysis to 

deduce the SNR at the receiver. From this SNR, we hope to estimate the probability of 

error for utility and data packets to be used in our simulation. 

B. TRANSMISSION LOSS 

Transmission Loss (TL) reflects the fraction of sound intensity lost between the 

source and the receiver. These losses can be broadly categorized as geometric spreading 

loss and the absorption losses. Because the range of these high frequency modems is 

short, we only consider simple spreading and absorption estimates. 

1. Spreading Loss 

Let I0 be the reference intensity of the sound pressure at a range of 1 m from the 

source and I1 be the sound intensity at a distant point. The transmission loss is  

  TL = 10 log
I0

I1

  (dB)      (3.1) 
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a. Spherical Spreading 

For a small source in a homogeneous, unbounded and lossless medium, 

power P generated at the source will radiate spherically outward.  

P = 4πr0
2I0 = 4πr1

2I1     (3.2) 

If  is a reference distance of 1 m, the transmission loss at a distance r1  

will be 

TLspherical = 10 log
I0

I1

= 10 log r1
2 = 20 log r1  dB   (3.3) 

where r1  is in meters. 

b. Cylindrical Spreading 

The ocean medium is bounded by the ocean surface and the seabed. In an 

ideal waveguide, sound does not cross these two boundaries. Therefore, the power 

generated at the source will radiate cylindrically outward, bounded between two parallel 

planes separated by a depth of D meters.  

 P = 2πr0DI0 = 2πr1DI1     (3.4) 

TLcylindrical = 10 log
I0

I1

= 10 logr1   (dB)     (3.5)  

2. Absorption Loss 

In general, absorption terms in TL calculations arise from scattering, as well as 

from thermal and chemical relaxations and are frequency dependent. In this discussion 

scattering is assumed to be negligible. In this case absorption loss is dominated by 

thermal and chemical relaxations in seawater. An estimate of the absorption coefficient 

α is defined as follows by Thorp [4] as 

α =
0.11 f 2

1+ f 2 +
44 f 2

4100 + f 2 + 3×10−4 f 2 + 3.3×10−3   (dB/km)   (3.6) 
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 TLabsorption = αr ×10−3   (dB)     (3.7) 

where r is in meters and f is in kHz. 

 is shown in Table 4 for a frequency range from 35 to 55 kHz at a 

range of 500 meters. 

Frequency TLabsorption  (dB) 
35 kHz 5.30
40 kHz 6.47
45 kHz 7.63
50 kHz 8.76
55 kHz 9.85

Table 4.   TL due to absorption at a range of 500 m. 

From Table 4, we notice that the maximum TL will occur at a frequency of 55 

kHz. Since the modem makes use of the full frequency spectrum, we will use the 

 factor at 55 kHz to compute the total transmission loss. To compute the 

maximum TL, spherical spreading is used. Therefore, by using Equations (3.3) and (3.7), 

TL = 20 log(500) +α500 ×10−3 = 53.98 + 9.85 = 63.83  (dB)  (3.8) 

C. NOISE LEVEL 

Noise Level (NL) in the ocean can be categorized into man-made noise and 

ambient noise. Man-made noise is mainly caused by machinery noise along the coast and 

shipping activity, while ambient noise is mainly caused by biologic and seismic activity, 

and by hydrodynamic noise caused by wave action, currents, tides, wind, and rain.  

Coates [5] provides empirical formulae to estimate Noise Spectrum Levels (NSL) 

as a function of frequency for open water. It can be observed from Figure 3 that in the 

band of our frequency of interest, between 35 and 55 kHz, wind-related noise contributes 

the most to the NSL. 
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Figure 3.   Noise Spectrum Level based on empirical formulae by Coates. (After [5]) 

Our interest here is in the littoral waters where sensors are likely to be deployed. 

The noise level in littoral water arises from three main components, as stated by Urick 

[6]. They are: (1) wind noise, (2) shipping and industrial noise, and (3) biological noise. 

A power sum of the noise spectrum level from these sources is used to determine the 

noise level of the area. However, as such noise varies over time, only a rough estimate 

may be made.  

1. Wind and Sea State 

According to the empirical formula from [5], illustrated in Figure 4, at a 

frequency of 45 kHz and for wind speeds between 0 and 15 m/s, the NSL ranges from 20 

to 45 dB re: 1 µPa2/Hz. This is comparable to a wind contribution ranging from 38 to 40 

dB with wind speeds ranging from between 6 m/s and 10 m/s, as shown in Figure 5. 
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Figure 4.   Ambient Noise Spectrum Level caused by sea state effect. (After [5]) 

 
Figure 5.   Noise Spectrum Levels of wind and rain. (From [10]) 

2. Shipping – In Bays and Harbors 

Most of the shipping noise in the deep ocean is below 1 kHz. Even in coastal 

areas, shipping noise contributes little to our frequency band of interest. Anderson and 

Gruber [7] measured the ambient noise at 30, 90, and 150 kHz in five ports in the United 
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States and Panama. The highest NSL value measured was from the port of Cristobal, 

where 70 dB at 30 kHz and 65 dB at 90 kHz were recorded. The lowest noise level was 

from Norfolk, where 45 dB at 30 kHz and 44 dB at 90 kHz were recorded. Extrapolations 

were made from these two measurements to obtain the NSL for 45 kHz, which has a 

maximum NSL of 77 dB re: 1 µPa2/Hz and a minimum NSL of 44 dB re: 1 µPa2/Hz. 

 

 

Figure 6.   Noise spectrum data obtained from five different ports in the United States 
and Panama. The dotted line represents data taken at night. Note also that the 

vertical scale is dB re 1 µBar instead of re 1 µPa. (From [7]) 

3. Biology 

Snapping shrimp, which exist in waters below latitudes of 27 degrees, generate a 

high level of noise in the frequency band of our interest. From Figure 7, we see that at a 

frequency of 45 kHz, snapping shrimp can generate NSL between 48 and 74 dB re 1 

µP2/Hz. 
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Figure 7.   Left:  Snapping shrimp NSL measured at various locations. (From [8]). 
Right:  NSL measured in waters off the coast of Singapore. (From [9]) 

Therefore, the total noise spectrum level (NSL) of the ambient noise is the 

summation of the three major sources of noise: shipping, wind and biologic noise. Since 

the range of a noise source is variable, such as the presence or absence of snapping 

shrimp, noise spectrum level is also variable. We therefore determine some minimum and 

maximum values for the total NSL: 

NSLmin = Shippingmin ⊕ Biomin ⊕Windmin  

NSLmin = 44 dB ⊕  0 dB ⊕  0 db = 44  (dB)    (3.9) 

NSLmax = Shippingmax ⊕ Biomax ⊕Windmax  

 NSLmax = 70 dB ⊕  74 dB ⊕  45 db = 75.5  (dB)    (3.10) 

To translate from NSL to NL, we must account for the transmission bandwidth, 

which we assume to be 80 Hz for each multi-channel MFSK tone.  

Therefore, 

 NLmin = NSLmin +10 log(80) = 44 +19 = 63  (dB)    (3.11) 

 NLmax = NSLmax +10 log(80) = 75.5 +19 = 94.5  (dB)   (3.12) 
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D. LINK BUDGET 

For an omnidirectional transmitter, the source level (SL) is defined as  

SL =
Isouce@1m

Iref

      (3.13) 

The intensity of the source is referenced to a standard range of 1 m. At a radius of 

1 m, the acoustic source is surrounded by a sphere of surface area 

 Areasphere = 4πr2 = 12.6 m2       (3.14) 

The power of the Seastar modem is 20 watts. Therefore, the intensity of the 

source is  

 Iscource@1m =
20

12.6
= 1.59 W/m2      (3.15) 

The data rate for the utility packet and data packet is 160 bps and 2400 bps, 

respectively. Therefore, the intensity of the source or the energy-per-bit is as follows: 

 Iutil /bit =
Isource@1m

DataRateutil

=
1.59

160
= 9.92 ×10−3  W/m2    (3.16) 

 IData /bit =
Isource@1m

DataRateData

=
1.59

2400
= 6.61×10−4  W/m2    (3.17) 

The intensity of the water reference at 1 μPa  is 6.76 ×10−19  W/m2 [9]. Therefore, 

by applying Equations (3.16) and (3.17) respectively, together with the reference 

intensity of water to (3.13), the SL or energy-per-bit for utility packets and data packets 

(εb _Util and εb _ Data ) is: 

 εb _Util = 10 log(
Iutil /bit

Iref

) = 161.7 dB      (3.18) 

εb _ Data = 10 log(
IData /bit

Iref

) = 149.9 dB      (3.19) 



 17

The SNR-per-bit (SNRb) can be found by using the Link Budget Model developed 

by Hanson [12] in the following formula: 

Energy Per Bit - Transmission Loss - Noise Level  = SNRb  (3.20) 

By substituting Equations (3.18) and (3.19) for Source Level, Equation (3.8) for 

Transmission Loss, and Equation (3.11) for Noise Level to find the maximum SNRb, and 

Equation (3.12) for Noise Level maximum to find the minimum SNRb, we get the 

following result: 

  SNRUtil _ Max = εb _Util − TL − NLmin = 34.9 dB     (3.21)  

SNRUtil _ Min = εb _Util − TL − NLmax = 3.4 dB     (3.22) 

SNRData _ Max = εb _ Data − TL − NLmin = 23.1 dB     (3.23) 

SNRData _ Min = εb _ Data − TL − NLmax = −8.4 dB    (3.24) 

We must be aware that the above SNRb may not be the minimum SNRb as the NL 

is given as an average over time. At the other extreme, a noisy source (such as a speed 

boat) passing above the receiver will generate a greater NL at that instant which will 

affect the SNRb. Therefore, high variability and large dynamic range can be expected at 

the receiver input.  

Another observation is that the SNRb for a utility packet is about 12 dB stronger 

than the SNRb for the data packet, because the utility packet has a slower rate of 

transmission. 

E. ERROR RATE 

There are two selectable bandwidths for the Seastar modem, 10 kHz and 20 kHz. 

The band is divided into 32 sets of 4-frequency bands. This is known as a multi-channel 

4-ary FSK modulation. [3] describes alternative implementations of multi-channel MFSK 

for Seastar, but these are not considered in this thesis.   

The formula in [11] is used to compute a binary Bit Error Rate (BERb) for a 

Gaussian noise random variable as  
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BERb = 0.5 * erfc(
εb

N0

) ,      (3.25) 

where erfc(•) is the complementary error function, εb  is the signal energy level per bit, 

and N0 is the noise energy level per bit. 
εb

N0

 is equivalent to the SNR of the transmitted 

signal. Therefore Equation (2.9) is rewritten as  

BERb = 0.5 * erfc( SNRb ) .      (3.26) 

For a M-ary FSK modulation, the probability of signal error, from [10], is  

PM = (−1)n+1( M −1
n

)(
1

n +1
)exp −

nkεb

(n +1)N0

⎡

⎣
⎢

⎤

⎦
⎥

n=1

M −1

∑   ,  (3.27) 

where k  is the number of encoded bits in M (or k = log2 (M ) ). 

The BER for M-ary FSK can be related to the probability of signal error using the 

following relationship: 

BER =
2k−1

2k −1
PM .       (3.28) 

There are 9 bytes in a utility packet and up to 4096 bytes per data packet. 

Therefore, the number of bits per packet for a utility packet ( BPPUtil ) and a data packet 

( BPPData ) are as follows:  

 BPPUtil = 9 × 8 = 72 bits       (3.29) 

 BPPData = 4096 × 8 = 32768 bits      (3.30) 

The packet error rate (PER) for both utility and data packets can be found by 

using Equations (3.28), (3.29) and (3.30) as shown below: 

PERUtil = 1− (1− BER)∧ (BPPUtil )      (3.31) 

PERData = 1− (1− BER)∧ (BPPData )      (3.32) 

PER for both utility and data packets are shown in Figure 8. 
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Figure 8.   Packet Error Rate (PER) for utility and data packets. 

From Figure 8, we observe that the PER for data packets is about 400 times 

greater than for utility packets. This factor is attributable to the larger number of bytes 

(4096 verse 72) in a data packet compared to a utility packet and ignores the receiver 

processing gain benefitting the utility packet by virtue of its lower bit rate. If the SNRb 

difference due to the different bit rate for data and utility packets is taken into account, 

the PER for the utility packet curve in Figure 8 would be an additional 12 dB less than 

that of the data packet PER, rendering the PER for the utility packets negligible when 

compared to the PER for data packets. We neglect the SNRb difference in our simulation.  

Our assumed dependence of the communication channel link on the noise level is 

summarized as follows. For a given transmit power and communication distance, we 

have a constant value in εb  and TL, and SNRb varies solely from fluctuation in the noise 

level. This range of variation in SNRb determines the range of probabilities of packet 

error rate according to Figure 8. Therefore, if we can obtain an accurate measurement of 

the noise level in the communication channel, we can calculate SNR and estimate the 
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error rate of the channel. For our simulation, we vary the data PER from 0 to 0.8 to 

observe the effect of noise on the network protocol. In these simulations, we hold the 

value of the utility PER to be 400 times lower than the data PER.  
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IV. NETWORK PROTOCOLS 

Seaweb uses a tree topology, which supports routing of information from the 

branch nodes to a gateway node. In Seastar, where the central node acts as a direct-path 

data collection point from a number of peripheral nodes, the tree topology is limited to a 

single link per branch, often described as a “star” topology. Previously, Kerstens [1] has 

identified the polling and token ring protocols to be suitable for implementation of 

Seastar.  

This chapter describes the polling and token ring protocols as well as 

improvements of these two by implementing a selective automatic repeat request (SRQ). 

A basic network exchange is described in Figure 9.  

 

Figure 9.   Network exchange consists of a utility packet sent from the central node to 
the peripheral node polling for data. After a short delay, the peripheral node 

replies with a utility packet concatenated with a data packet. The data packet is 
broken into 16 sub-packets.  

Seastar communications involve two classes of packets. The first class provides 

various utility functions for the network and is referred to as a “utility packet.” The utility 

packet is transmitted at a low bit rate (due to convolutional coding and data redundancy) 

to ensure data reliability.  
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The second class of packet is the “data packet.” The data packet is transmitted at a 

higher bit rate.  

A. SELECTIVE AUTOMATIC REPEAT REQUEST (SRQ) 

The SRQ, as described in [13], is a mechanism implemented at the link layer to 

mitigate the unreliability inherent in the acoustic modem physical layer. Without SRQ, 

when the central node receives a data packet that contains bit errors, it will either drop 

that data packet or request that the whole data packet be retransmitted again. The channel 

capacity is thus reduced. 

SRQ improves the link reliability and channel capacity by splitting each data 

packet into 16 sub-packets, each with a 2-byte cyclic redundancy check. When errors 

occur in one or more of the sub-packets, the central node requests that only the corrupted 

sub-packets be retransmitted, as shown in Figure 10. This reduces the number of data 

bytes to be transmitted by as much as a factor of 16. The maximum number of retries for 

the SRQ can be limited, so that the data packet will only be dropped after this criteria is 

reached.  

 
Figure 10.   A data packet is divided into 16 sub-packets, each with its own CRC. When 

a corrupted data packet is received, the central node issues an SRQ utility 
packet requesting the peripheral node retransmit only the corrupted sub-packets. 
If necessary, the central node issues additional SRQs until either all sub-packets 
are successfully received or a pre-determined number of retries are reached. If a 
pre-determined number of retries is reached, the data packet is dropped and the 

central node proceeds to the next peripheral node.  
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B. POLLING 

The star topology includes a central node and a number of peripheral nodes. The 

central node polls each peripheral node sequentially, as shown in Figure 11, to control the 

flow of data traffic.  

 

Figure 11.   Star topology with polling protocol. The left diagram is without SRQ and 
the right is with SRQ. High-bit-rate data packets are depicted as wide arrows, 

and low-bit-rate utility packets as narrow arrows. (From [6])  

1. Without SRQ 

For the purpose of our simulation, when a corrupted utility or data sub-packet is 

received, the entire data packet is dropped. This policy ensures that the latency of the 

network remains low. The utility packet transmitted from the central node, due to its 

small size and low probability of error, is permitted for retransmission for a number of 

times. If the maximum allowed retries is reached, the data packet is dropped and the next 

node is polled.  
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Figure 12.   Polling without SRQ. 

2. With SRQ 

For polling with SRQ, as shown in Figure 13, the central node issues an SRQ 

when a corrupted utility packet or data sub-packet is received from the peripheral node. 

SRQ will continue to be sent to the same node until the maximum number of SRQ retries 

is reached or a complete data packet is received from that node. A new utility packet is 

then sent to the next peripheral node in line.  

A silence from the peripheral node after issuing a utility packet by the central 

node can be due to either failure in the utility packet reaching the peripheral node or a 

failure in transmission from the peripheral node. The period of time from the 

transmission of the utility packet by the central node to issuing an SRQ can be adaptively 

calculated by computing the round-trip propagation delay (2tPD), dwell time (tDwell) and 

the utility (tUtil) and data packet transmission (tData) times. They are defined as follows:  
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Figure 13.   Polling with SRQ. 

a. Propagation Delay 

Propagation delay is the time taken for the signal to travel from one node 

to the other. It is computed as Range * Speed of Sound. The range between the nodes is 

found during the network initialization phase by making use of a ranging function in the 

modem. The description of that function can be found in [14]. For our simulation, we 

assume the speed of sound over depth in seawater to be c = 1500m/s [15]. 

b. Dwell Time 

The dwell time is the time from the arrival of the utility packet (poll) 

from the central node to the transmission of the utility packet (header) to the central 
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node. It consists of the modem wake-up time and computational time. It is set to a 

constant of 1.2 seconds in the simulation.  

c. Utility Packet Transmission Time 

The time taken to transmit a utility packet is the Number of Bytes in the 

Utility packet * Data Rate of the Utility Packet. For the simulation, they are 9 bytes and 

140 bits/second, respectively, for the simulation.  

9 * 8 /140 = 0.51 s        (4.1) 

d. Data Packet Transmission Time 

The time taken to transmit a data packet is the Total Number of Data 

Bytes * Data Rate of Data Packet. For our simulation, each data packet consists of 4000 

data bytes and 96 overhead bytes, and they were transmitted at a data rate of 2400 

bits/second.  

e. Adaptive Time-Out Period 

The adaptive time-out period, as shown in Figures 12b and 12c, is 

calculated as: 

Ttime−out = 2 * tPD + tDwell + tUtil + tData      (4.2a) 

Ttime−out = 2 * Range * c + tDwell + tUtil + tData     (4.2b) 

where c is the speed of sound in water.  

C. TOKEN RING 

Unlike the polling protocol, the central node in the token ring network 

relinquishes control of the network flow by releasing a token to a peripheral node. The 

node that has the token performs its task (i.e., transmitting the data) before passing the 

token to the next node. This protocol should have a lower overhead compared with 

polling.   
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1. Without SRQ 

In a token ring network that does not use SRQ, the central node releases the token 

to the peripheral nodes upon initialization and does not regain control of the token, as 

shown in Figure 14a. The central node continues to keep track of the position of the 

token. In the event that a token transmission between two nodes is lost, the central node 

intervenes by sending a new token to the next peripheral node in the line, as shown in 

Figure 14b.  

Any corrupted data packet is dropped. This allows the network to perform with 

lower latency and shorter cycle time. The disadvantage of this protocol is that in a high 

noise environment, there is the potential of losing a high amount of data.  

 

 

Figure 14.   Token Ring Network without SRQ. 



 28

2. With SRQ  

The final protocol is a combination of the token ring and polling with SRQ. In this 

case, as shown in Figure 15a, the central node takes note of failed data packets in addition 

to keeping track of the position of the token as before. When the token reaches the last of 

the peripheral nodes, it passes back to the central node which issues SRQs to attempt to 

reconstitute the corrupted data packet, node by node. A data packet is dropped after the 

maximum number of retries. After the central node completes the SRQ process, the token 

is again released to the peripheral nodes for a new cycle of data transfer.  

This protocol helps in lowering the dropped data packet rate while keeping the 

latency level lower than with the polling with SRQ protocol.  



 29

 

Figure 15.   Token Ring network with SRQ. 
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V. NETWORK SIMULATION 

Computer simulation of an event-driven Seastar network allows for controlled 

study of the four candidate network protocols. The different network protocols are 

exercised in the simulation through various parametric test cases. The simulations 

generate four measurements, namely the network latency, data throughput, dropped 

packets, and error-free cycle. For each test case, the candidate protocols are evaluated to 

determine which protocol is best suited for meeting particular operational requirements. 

A. SIMULATION PARAMETERS 

1. General Definitions  

Table 5 provides definitions of the terms used in this chapter and values assumed 

for the simulation. 

Type Definition  
Data Packet Includes 16 sub-packets, containing a total of 4096 bytes, 

of which 4000 are data bytes and 96 overhead bytes. 
Sub-Packet Includes 250 data bytes and 6 overhead bytes. 
Utility Packet Contains 9 bytes. Used for regulating the flow of data 

traffic. Note that Utility packets will always precede the 
Data packet from the peripheral node to the central node.  

Table 5.   Definition of terms used in the simulation.  

The simulation is event-driven with a time increment between each event 

equivalent to the duration of the process occurring at that time. Table 6 provides the 

various events that are used for the simulation.  
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Type Duration Description 
tpropdelay Varies Propagation delay between each pair of nodes is 

proportional to the range by the relation tpropdelay= r * c = r * 
1500 m/s. 

tCPU 1.200 sec Dwell time between receptions of utility packet to 
response.  

tTO 1 sec Time out period.  
tData 13.653 sec Transmission time for one data packet containing 4096 

bytes. 
tSubData 0.853 sec Transmission time for one data sub-packet containing 256 

bytes. 
tUtil 0.450 sec Transmission time for one utility packet. 

Table 6.   Duration of various events.  

2. Input Parameter 

The simulation has two input parameters: position of the nodes in Cartesian 

coordinates, and the error rate of the data packet.  

a. Node Position 

The node positions are specified  within a 1001 by 1001 square grid with 

the origin [0,0] at the center of the grid. The central node is placed at the origin. The 

simulation calculates the range of the peripheral nodes to the central node and arranges 

them in order of their distance from the central node, from the nearest to the farthest.  

This is the sequence used by the polling protocol to access the peripheral nodes.  

For the token ring protocol, the sequence of the nodes is further optimized 

by an algorithm that computes the shortest path to cycle through all the nodes, beginning 

and ending at the central node. The optimization algorithm limits the number of 

peripheral nodes to less than nine peripheral nodes for this simulation program.  

Propagation times between nodes, tpropdelay, are calculated using the 

distances provided in Table 6. 

b. Error Rate 

The input for data packet error rate ranges from 0.0 to 0.8; i.e., 0.4 at 

about SNRb = 10.4 dB, as shown in Figure 9. The simulation takes the data packet error 
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rate and computes the utility packet error rate at 400 times lower, as explained in the 

previous chapter; i.e., 0.001 at about SNRb =10.4 dB.  

A random number between 0 and 1 of uniform distribution is generated at 

each event when a packet is transmitted. A corrupted utility or data packet is declared if 

the random number falls below the utility or data error rate, respectively. The simulation 

takes the appropriate measures when an error event occurs according to the policy 

prescribed by each network protocol. 

B. PERFORMANCE METRICS  

Simulated operation of the Seastar network is assessed according to certain 

performance metrics related to important functional characteristics. Four such metrics are 

identified in the following sections. 

1. Latency 

Latency is a measurement of the time required to complete a cycle. Each cycle 

includes the transmission time, propagation delay, and dwell time. The latency 

measurement starts with a node issuing a utility packet (poll or token) to the next node 

and ends when the same node next issues the utility packet to the next node after 

completing all the nodes in the network. The latency measurement starts at the central 

node for the token ring with SRQ, as shown in Figure 16. The measurement starts at the 

first peripheral node for the token ring without SRQ.  
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Figure 16.   Calculation of latency for the token ring with SRQ protocol. 

Two different measurements of latency are recorded, the average time per cycle, 

and the maximum time per cycle. The average time per cycle is computed by dividing the 

total simulation time by the total number of cycles completed. The maximum time per 

cycle is the longest time it takes to complete one cycle during a single simulation run. If 

there is more than one simulation run, an average of the maximum time is recorded. 

2. Throughput 

Throughput is a measure of the number of successfully transmitted data packets 

and data bytes the network can support within the simulation time. If SRQ is 

implemented, only the successful transmission of all sub-packets is counted as a 

successful transmission. If a dropped packet or timeout occurs, that packet is not 

considered a successful transmission.  

3. Dropped Data Packet 

A dropped data packet occurs in three different ways. In the two protocols without 

SRQ, in the event that an error bit occurs in the data packet, the data are considered 

corrupted and the packet is dropped. In the two protocols with SRQ, in the event that the 

maximum number of SRQ retries is reached, time-out is declared and the data packet is 
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dropped. For both polling protocols, in the event that the maximum number of retries of 

the poll utility packet is reached, the data packet for that peripheral node is dropped. 

4. Error-Free Cycle 

Seastar is intended to gather data from each peripheral sensor node for 

assimilation at the central node upon completion of a cycle. Therefore, any occurrence of 

a dropped packet or timeout in a cycle may limit the successful fusion of data in that 

cycle. The error-free cycle throughput measures each complete error-free collection of 

data packets from all peripheral nodes in a cycle.  

C. CASE STUDIES AND PARAMETRIC ANALYSIS 

There are three variables in the simulation. They are (1) number of nodes, (2) 

geometrical layout, and (3) the error rate. The variable error rate is used to simulate a 

low-, middle-, and high-noise environment. Simulation can show the sensitivity of the 

candidate protocol to these variable parameters. 

1. Number of Peripheral Nodes 

The simulation runs test the number of peripheral nodes = [2,3,4,5,6,7,8]. This 

parameter is useful in examining the impact of increasing the number of nodes on the 

different candidate protocols. The nodes are located on both a linear layout and a circular 

layout as described in the following section.   

2. Layout of Nodes 

a. Linear Layout 

A single line layout is useful in various applications, such as a surveillance 

tripwire at a harbor entrance or a magnetic sensor network. Because the Seastar modem is 

designed to operate within a range of 500 m, the maximum aperture of a linear layout is 1 

km if the central node is placed at the middle.   
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Figure 17.   Different layouts of straight lines with two to eight peripheral  nodes. 

b. Circular Layout 

Circular layouts, as shown in Figure 18, serve as bounding cases for 

layouts involving a two-dimensional distribution of nodes. As described in [6], if there 

are fewer than six peripheral nodes in the network, the area coverage of a circular layout 

is limited by the assumed maximum communications range rmax = 500 m . If there are six 

or more peripheral nodes, the coverage is limited by the central node when it is at the 

center of the circle. Therefore, the maximum communication coverage of the network 

when six or more peripheral nodes are deployed is πr2 = π (0.5)2 = 0.785 km2 . 

250 250 
(a) 

167 166167
(b) 

125 125 125 125
(c) 

100
(d) 

100 100 100 100 

167 166167166 167 167
(e) 

167166 167 
(f) 

125 125 125 125 

125 125 125 125 125 125 125 125
(g) 



 37

 

Figure 18.   Different circular layouts with two to eight peripheral nodes. Note that the 
range between peripheral nodes begins to decrease when the total number of 

peripheral nodes exceeds six. 
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3. Error Rate 

The error rate is used to investigate the effect of noisy environments on the 

network. This test parameter yields information on the relative performance of the 

protocols in good and bad communication environments.  

Deployed networks experience a wide range of ambient noise conditions. In 

chapter III, it was estimated that the SNRData_Min, SNRData_Max SNRUtil_Min and SNRUtil_Max 

for the data and utility packet to be -8.4 dB, 23.1 dB, 3.4 dB and 34.9 dB, respectively. 

This gives an SNR range of 31.5 dB. 

In order to achieve a data packet error rate of less than 10-5, SNRb > 13 dB is 

required, as shown in Figure 9. When SNRb < 10.3 dB, a data packet error rate of more 

than 0.5 is generated. For the purpose of this simulation, these two values will be 

considered the low- and high-noise environments; that is, a Noise Level of less than 73 

dB is considered to be a low-noise environment, and a Noise Level of greater than 75.8 

dB is considered a high-noise environment. A data packet error rate of 0.2 is used to 

simulate a mid-noise environment.  
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VI. RESULTS  

A. EFFECTS OF NUMBER OF NODES AND GEOMETRICAL LAYOUT 

Figure 19 displays the result of a 0.0 error rate with the number of peripheral 

nodes, N = [2,3,4,5,6,7,8] in both linear and circular layouts. The average time per cycle 

plot shows that both polling methods have the same performance, since there are no bit 

errors occurring in the simulation. They exhibit the longest average cycle time due to the 

overhead of polling. The token ring with SRQ is the next longest, as the token 

unnecessary passes through the central node. The token ring without SRQ provides the 

shortest cycle time. The cycle times increase linearly as the number of nodes increase, 

which is to be expected.  

For the maximum cycle time plot, it might be expected to see the same plot as the 

average time plot, as there are no errors to prolong the cycle time. However, the two 

token ring protocols lay on the same line. This is because for the token ring without SRQ, 

the token begins from the central node, and this first cycle time is the longest, and is thus 

registered.  

In the throughput plot, we observe the geometrical layout of the nodes coming 

into play. In general, the linear layout enables the network to carry more data packets, as 

the distances between the central and peripheral nodes, as well as between the peripheral 

nodes themselves, are shorter when compared to the circular layout. The only exception 

to this is the 3-peripheral circular layout when polling with SRQ protocol is applied. This 

is because the central node is in the center of the triangle, as shown in Figure 18b, and 

therefore, has a shorter traveling distance to the peripheral nodes. This enables it to have 

a higher packet rate.  
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Figure 19.   Number of peripheral nodes with an error rate of 0.0.  

It can be observed that the token without SRQ protocol provides the most 

throughput in an error-free environment, as it has the least overhead. It is followed 

closely by token with SRQ. Additionally, both of the polling protocols are the least 

efficient. The same trend is seen in the channel utilization rate.  
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Finally, in the error-free cycle plots, as the number of peripheral nodes exceeds 

six, the coverage of the layout does not change, due to the star topology. Only the density 

of the nodes in a given area increases with more than six peripheral nodes. Therefore, the 

number of error-free cycles decays exponentially, as seen in the plot.  

Figure 20 displays the performance with a change in the error rate parameter from 

0.0 to 0.2 applied over the same number of nodes, as in Figure 19.  
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Figure 20.   Number of peripheral nodes with error rate of 0.2. 

When errors are introduced into the network, some important changes occur. The 

latency of the protocols with SRQ increases due to the additional error correction 

mechanisms at work. For those protocols that do not implement SRQ, dropped packet 
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rate increases significantly, as no error correction efforts are made with no change in 

latency. All the protocols experience a reduction in the error-free cycle. Those protocols 

that do not implement SRQ are the most adversely affected.   

In concluding this section, we observe that as the latency of the network is both a 

function of the number of nodes as well as the density of the nodes in a given area. Thus 

the closer the peripheral nodes are to the central node, the lower the latency. Circular 

layouts, being the bounding geometry, show the poorer performance overall as the 

distance between the nodes are greater. In an error-free network, protocols without SRQ 

allow the network to operate at maximum efficiency, but when errors are introduced into 

the network, protocols with SRQ enable the network to continue to function with less 

degradation.  

B. EFFECT OF ERROR RATE 

This section shows the effect of varying the error rate from 0.0 to 0.8 in a six-

peripheral network. This variation of error rate is to simulate changing environmental 

noise and its impact on the network. As noted in the previous section, the circular layout 

is the bounding case, and this section will only address the circular layout.  

1. Time Per Cycle Versus Error Rate  

In Figure 21, it is observed that for the protocols without SRQ, both the average 

time per cycle and the maximum time per cycle remain constant with increasing error 

rate. This is because whenever there is a corrupted data packet, it is dropped with no 

delay to the network. For the protocol with SRQ, latency increases as the error rate 

increases because of the time consumed by the SRQ mechanisms.  
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Figure 21.   Average and maximum time per cycle verse error rate. 

2. Throughput and Dropped Data Rate 

 

Figure 22.   Throughput and dropped data rate versus error rate. 

In the throughput plot in Figure 22, it is evident that the plot representing token 

ring without SRQ crosses the token ring with SRQ and polling with SRQ at error rates of 

about 0.12 and 0.45, respectively. Therefore, if maintaining a high level of throughput is 

a priority and dropped data is of less concern, network protocols should be switched 

when an increase in ambient noise level is observed.  
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In the dropped data plot, the beginning of an exponential increase in dropped data 

at error levels above 0.2 becomes evident. This rate can be suppressed by increasing the 

maximum number of SRQs. However, this adversely impacts the latency of the network, 

and is therefore a trade-off. 

3. Channel Utilization and Error-Free Cycle 

 

Figure 23.   Channel utilization and error-free cycle versus error rate. 

The channel utilization plot in Figure 23 illustrates how the utilization rate 

decreases with increasing error rate as more and more of the channel availability is used 

by error correction. In many applications of Seastar, an error-free cycle is important if the 

central node requires uncorrupted data from all peripheral nodes to perform data fusion 

for the cycle. From the error-free cycle plot in Figure 23, a crossover point between token 

with SRQ and polling with SRQ at an error rate of 0.4 occurs. This indicates that the 

polling with SRQ protocol is more robust at maintaining error-free cycles in noisy 

environments. 
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VII. CONCLUSION AND RECOMMENDATIONS 

A. SUMMARY OF FINDINGS 

Seastar is a LAN design for accumulating underwater distributed sensor data at a 

central node for data fusion. This thesis evaluated four candidate network protocols using 

an event-driven simulation. Figure 24 ranks the candidate protocol according to their 

relative performance against particular metrics. 

 

Figure 24.   Performance metrics 

For high throughput performance in low noise conditions, the token ring without 

SRQ performs the best while in mid to high noise conditions, the token ring with SRQ is 

superior. For low latency performance where dropped data packets can be tolerated, 

token ring without SRQ provides the lowest cycle time. However, if there is a need to 

minimize the number of dropped data packets, token ring with SRQ is superior. 

In a data-sensitive network, where error-free cycles are necessary for successful 

data fusion, the token ring with SRQ performs well from low to mid of noise. However, 

in high noise environments, polling with SRQ performs better than token ring with SRQ.  
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Polling without SRQ does not have any advantage over the other three protocols 

in any scenario considered here. Therefore, it is recommended that this protocol not be 

considered for future implementation.  

For the simulation, all the modems were considered to be in either listening or 

transmitting mode without entering a low-power mode. This means that battery energy is 

constantly being consumed. In a scenario where the sensor data refresh rate is much 

longer than the cycle time, having the modem switch to low-power mode could conserve 

energy. Under this condition, the traditional protocol used by Seaweb, polling with SRQ, 

would provide both a centrally controlled data transfer in conjunction with fast and 

reliable throughput.  

B. CONCLUSION 

Seastar is a viable networking concept. The network protocols considered here are 

well suited for the high throughput and reliability required by applications such as 

maritime surveillance. The centralized topology is advantageous in that only the central 

node need be sophisticated enough to perform data fusion, receive and process high bit-

rate data packets, orchestrate the LAN operations, and communicate through the Seaweb 

WAN or gateway node. From a communication standpoint, the peripheral nodes can be 

relatively simple, capable only of receiving utility packets. Such limited capability at the 

peripheral nodes permits them to receive commands from the central nodes (e.g., poll and 

SRQ) and peer-to-peer communications from neighboring peripheral nodes (e.g., token 

and ping/echo).  

It is concluded from this thesis research that the networking protocol should 

include multiple operating nodes to be invoked under the control of the central node. The 

selected protocol should be matched to the operational requirement (e.g., throughput, 

latency, reliability) and the environmental conditions (e.g., noise conditions and error 

rates).  
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C. RECOMMENDATIONS FOR FUTURE WORK 

1. Energy Conservation 

The acoustic modem obtains its power from battery cells and this usually limits 

the operational time. This thesis estimates the maximum throughput and minimum 

latency by keeping the modem constantly in an “awake” mode. Therefore, this study does 

not allow energy conservation to play a part in protocol selection.  

In the event when the peripheral node refresh rate is low, the modem could be 

placed in a low-power state between each cycle, thereby conserving its energy. There is a 

need to evaluate the potential energy savings against the requirement for latency, 

throughput and reliability.   

2. Environmental Noise Simulation 

The simulation conducted in conjunction with this thesis assumes static levels of 

error rate. To develop this simulation program  a mission planning tool, a module that 

simulates or accepts a playback of pre-recorded noise level fluctuation characteristic of 

the intended operational area, should be added. This would provide the mission planner 

and operator with a better understanding of how the network will perform.  

3. Performance Measurement of Seastar Modems 

The transmitted power and source level for this simulation is obtained from the 

vendor specification sheet. As of June 2010, the Seastar modems are undergoing testing 

and measurement by another student at the Naval Postgraduate School (NPS). Once the 

testing is complete, the actual modem data could be used to refine the simulation and its 

test products. 
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APPENDIX    SIMULATION ALGORITHM IN MATLAB 

This function iniSeaStar.m is called in the seastarsim.m function and is to 

initialize the Seaweb simulation with the required data parameter. 

  
function [SSPack] = iniSeaStar() 
  
 
N = 7; %Number of Modems including the central node 
Data_Mod = 2400; %Data modulation in bits per sec 
Util_Mod = 160; %Utility modulation in bits per sec 
Sound_Speed = 1500; %In meters per sec 
Poll_CTS = 9; %Number of bytes used for Polling 
Data = 4000; %Number of bytes 
Processor_Delay = 1200; %Time for each modem to process the data in msec 
  
  
%Parameter settings 
Token_Byte = 9; % 2 bytes for addressing, 2byte for CRC, 1 byte for  
%each node and 3 byte for SRQ addressing for each node. 
Data_Mod = Data_Mod/8; % Data modulation in bytes per sec 
Util_Mod = Util_Mod/8; % Utilities modulation in bytes per sec 
SubPack = ceil(Data/16)+6 ; % 6 information bytes per subpacket  
DataPack = SubPack*16; %16 Subpackets make up 1 data packet 
Time_DByte = 1/Data_Mod; %Time to send a byte of data 
Time_UByte = 1/Util_Mod; 
Time_UtsPack = Time_UByte*Poll_CTS;       %Time for Tx CTS in sec 
Time_TokenPack = Time_UByte*Token_Byte; 
Time_DataPack = Time_DByte*DataPack;     %Time for Tx data in sec 
Time_DataSubPack = Time_DByte*SubPack; 
Time_Pro = Processor_Delay/1000; %Time Delay of Processor in sec 
  
SSPack = [Time_DataPack,Time_DataSubPack,Time_UtsPack,Time_Pro,... 
    Sound_Speed,N,DataPack,Poll_CTS,Time_TokenPack,Token_Byte,SubPack,... 
    Data,Data_Mod,Util_Mod]; 
 
/////////////////////////////////////////////////////////// 

This function GridNode.m is called in the seastarsim.m function and takes in two 

variable:  

Number_of_Nodes = total deployed nodes (N) 
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Matrix_of_Grid = A two by Number of nodes matrix with row 1 as the x-axis and 

row 2 as the y-axis of the grid. The first column is the central node position. 

The function will generate a grid of 1001 by 1001 and position the node into the 

grid. The central node will be place at position (0,0), while the rest will take on a position 

from -500 to 500 according. 

The function will return an N+2 by N matrix with Rows 1 and 2 containing the x 

and y coordinates of the position grid of the nodes, respectively. Columns 1 to N are the 

node rankings by distance away from the central node with Column 1 being the central 

node position. Rows 3 to Row N+2 versus Column 1 to N is the distance between those 

nodes.  

 

function [Block] = GridNode(Number_of_Nodes,Matrix_of_Grid) 
  
 
N = Number_of_Nodes; 
M = Matrix_of_Grid; 
B = zeros(N+2,N); 
  
for i = 1:2 
    for j = 1:N 
        if i == 1 
            B(i,j) = M(i,1)-M(i,j); 
        else 
            B(i,j) = M(i,1)-M(i,j); 
        end 
    end 
end 
  
%Distance calculation.  
  
for i = 3:(N+2) 
    for j = 1:N 
        B(i,j)=sqrt((B(1,i-2)-B(1,j))^2+(B(2,i-2)-B(2,j))^2); 
    end 
end 
  
% Sort row 3 and column 1 of matrix according to distance from central node.  
B = sortrows(B,1); 
Block = rot90(sortrows(rot90(B,-1),N)); 
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////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

This function PropTime.m calculates the propagation delay between the nodes. 

Input includes the number of nodes, sound speed and the grid layout of the network. 

Output of the function <Proptime> will consist of the grid position of the node and the 

propagation time delay between the nodes.  

  
function [TPropT] = PropTime(N,SS,Grid) 
     
SpeedMatrix = cat(1,ones(2,N),repmat(SS,N,N)); 
  
TPropT = Grid./SpeedMatrix; 
  
maxSpeed = 502/SS; 
  
for i= 3:(N+2) 
    for j = 1:N 
        if TPropT(i,j) > maxSpeed 
            TPropT(i,j) = 999; 
        end 
    end 
end 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

This function TkRing.m is called in the seastarsim.m function. It is used to order 

the nodes in for the Token Ring network that will provide the lowest amount of delay. It 

take in the input of the Matrix of TPropDelay and Number of Nodes and outputs the 

Token Order <Torder> and Token Ring Propagation Delay <TRdelay> 

  
function [Torder,TDorder] = TkRing(TPD,Node) 
  
a = sortrows(perms(2:Node),1:Node-1); 
[x,y] = size(a); 
b = ones(x,y+2); 
b(:,2:y+1)=a; 
  
TD = TPD(3:Node+2,:); 
  
TDwithOrder = zeros(x,Node); 
  
for i = 1:x 
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    for j = 1:Node 
        loc = b(i,j:j+1); 

TDwithOrder(i,j) = TD(loc(1),loc(2)); 
    end 
end 
  
TotDelay = sum(TDwithOrder,2); 
[TRdelay,Indexline] = min(TotDelay); 
  
Torder = b(Indexline,:); 
TDorder = zeros(2,Node); 
TDorder(1,:) = TDwithOrder(Indexline,:); 
for i = 2:Node 
    b = Torder(i); 
    TDorder(2,i) = TD(1,b); 
end 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 

The function Polling2.m is called in the seastarsim.m function and is used to 

simulate the polling network with SRQ.  

% Input of <Polling2> consists of the following 
% a. ST = Simulation Time 
% b. SSpack(1) = TDP = Tx Time for a Data Packet 
% c. SSpack(2) = TDSP = Tx Time for a Data Subpacket 
% d. SSpack(3) = TUP = Tx Time for a Utilities packet 
% e. SSpack(4) = TCPUD = Delay time for modem CPU 
% f. SSpack(6) = N = Number of nodes 
% g. SSpack(7) = DB = Number of Data bytes 
% h. PPD = A array of Propagation delay between nodes in sequence 1 to N 
% i. SSpack(8) = Number of polling utilities bytes 
% j. SSpack (9) = TTP = Tx time for a token ring 
% k. SSpack(10) = TRB = Number of Token Ring bytes 
% l. SSpack(11) = SPB = Number of subpacket bytes 
% 
% Output of <Polling> will consist of the following: 
% a. PSDP = Successful number of data packets 
% b. PSUP = Successful number of Utility packets 
% c. PSB = Successful number of byte Tx.  
% d. PSPRT = Number of sub-packets re-transmitted.  
% e. PFSP = Number of sub-packet failures with time of failure  
% f. PFP = Number of packet failure with time of failure 
% g. PFU = Number of failed utilities Tx failures with time log of failure 
% h. PTO = Number of Time-outs 
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function [PSDP,PSUP,PSB,PSPRT,PFP,PFSP,PFU,PTO,CT] = 
Polling2(ST,SSpack,PPD,EL) 
  
 
%Ini Setup for function 
time = 0;   % Run time 
sctime = 0; % Start Cycle time 
nCycle = 0; % Number of cycles 
sCycle = 0; % Number of Successful Cycles 
maxCycletime = 0; % max time per cycle 
avgCycletime = 0; % Average time per cycle 
NEvent = 0; % Running number of Events 
PSDP = 0;   % Number of successful Data packets transmitted 
PSUP = 0;   % Number of successful Utilities packets transmitted 
PSB = 0 ;   % Number of Bytes transmitted 
PSPRT = 0;  % Number of sub-packets retransmitted 
PFP = 0;    % Number of failed packets event 
PFSP =0;    % Number of failed sub packet 
PFU = 0;    % Number of failed Utility packet 
PTO = 0;    % Number of Time-Outs 
maxRetry = 3; % Number of retries before Time-out.  
maxSRQ = 16; % Number of sub-packets 
N = SSpack(6); %Number of Nodes 
PDCount = 2; % Propagation Delay Counter 
ELU = EL(1); % Error Level of Utilities 
ELP = EL(2); % Error Level of Data Packet 
TUP = SSpack(3); 
TCPU = SSpack(4); 
TO = 1; % TO wait 
SPB = SSpack(11); 
state = 1; 
URC = 0; % Number of Utilities Retries 
SRQRC = 0; % Number of SRQ Retries 
MaxSRQR = maxRetry; 
MaxUR = maxRetry; 
SRQFlag = 0; 
SRQerror = 0; 
DropPackFlag = 0; % flagged if there's a dropped packet 
 
%Main Program 
  
while time <= ST 
    switch state 
  
        case 1  
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            [time,B,NEvent] = PCnode2(time,ST,SSpack,PPD(PDCount),NEvent); 
            state = 2; 
         
        case 2 
            PSUP = PSUP + 1; 
            PSB = PSB + B;               
            if AnyError(ELU) == true 

state = 4; 
                PSB = PSB - B; 
                PFU = PFU + 1; 
                PSUP = PSUP - 1; 
                time = time + TCPU+PPD(PDCount)+TUP+TO; 
            else 
                state = 3; 
                [time,B,P,SP,U,NEvent] = 
PPnode2(time,ST,SSpack,PPD(PDCount),SRQerror,SRQFlag,NEvent); 
            end 
             
        case 3 
            PSB = PSB + B; 
            PSDP = PSDP + P; 
            PSUP = PSUP + U; 
            if SRQFlag == 1  
                PSPRT = PSPRT + SP; 
            end 
            if AnyError(ELU) == true 
                    SRQerror = maxSRQ; 
                    if SRQFlag == 1 

PFSP = PFSP + SRQerror; 
end 

                    PFU = PFU+1; 
                    PSB = PSB - B; 
                    PSUP = PSUP - U; 
                    state = 5; 
              elseif AnyError(ELP) == true 
                  if SRQFlag == 1   
                    SRQerror = ceil(random('unif',1,SRQerror)); 

 state = 6; 
                    PFSP = PFSP + SRQerror; 

PSB = PSB - (SRQerror*SPB); 
                  else 
                    SRQerror = ceil(random('unif',1,maxSRQ)); 

state = 6; 
                    PFSP = PFSP - maxSRQ + SRQerror; 
                    PSB = PSB - (SRQerror*SPB); 



 57

                  end                
                PFP = PFP +1; 
                PFSP = PFSP + maxSRQ; 
                SRQFlag = 1; 
                PSDP = PSDP - P; 
            else 
                state = 7; 
            end 
             
        case 4 
            if URC == MaxUR 
                state = 7; 

PTO = PTO + 1; 
                DropPackFlag = 1; 
            else 
                URC = URC + 1; 
                state = 1; 
            end 
             
        case 5 
            if SRQRC == MaxSRQR 

PTO = PTO + 1; 
                DropPackFlag = 1; 
                state = 7; 
            else 
                SRQRC = SRQRC+1; 
                state = 4; 
                time =time+TO; %util fail to reach back Central node, TO is the waiting gap 
            end 
         
        case 6 
            if SRQRC == MaxSRQR 

PTO = PTO + 1; 
                DropPackFlag = 1; 
                state = 7; 
            else 
                state = 1; 
                SRQRC = SRQRC+1; 
            end 
             
        case 7 
            if PDCount == N 
                PDCount = 2; 
                nCycle = nCycle + 1; 
                ctime = time - sctime; 
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                sctime = time; % start of new cycle 
                if ctime > maxCycletime 
                    maxCycletime = ctime; 
                end 
                if DropPackFlag ~= 1 
                    sCycle = sCycle+1; 
                end 
                avgCycletime = (time/nCycle); 
            else 
                PDCount = PDCount+1; 
            end             
            URC = 0; 
            SRQRC = 0; 
            SRQFlag = 0; 
            SRQerror = 0; 
            DropPackFlag = 0; 
            state = 2; 
            [time,B,NEvent] = PCnode2(time,ST,SSpack,PPD(PDCount),NEvent); 
    end 
end 
 
CT = [avgCycletime,maxCycletime,nCycle,sCycle]; 
  
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 

The function of PollingS.m is called in the seastarsim.m function and is to 

simulate the polling protocol without SRQ 

% Function for <PollingS> uses the following input  
% a. ST = Simulation Time 
% b. SSpack(1) = TDP = Tx Time for a Data Packet 
% c. SSpack(2) = TDSP = Tx Time for a Data Sub-packet 
% d. SSpack(3) = TUP = Tx Time for a Utilities packet 
% e. SSpack(4) = TCPUD = Delay time for modem CPU 
% f. SSpack(6) = N = Number of nodes 
% g. SSpack(7) = DB = Number of Data bytes 
% h. PPD = An array of Propagation delay between nodes in sequence 1 to N 
% i. SSpack(8) = Number of polling utilities bytes 
% j. SSpack (9) = TTP = Tx time for a token ring 
% k. SSpack(10) = TRB = Number of Token Ring bytes  
% l. SSpack(11) = SPB = Number of subpacket bytes 
% 
% Output of <Polling> will consist of the following 
% a. PSDP = Successful number of data packet 
% b. PSUP = Successful number of Utilities sign 
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% c. PSB = Successful number of byte Tx.  
% d. PSPRT = Number of sub-packet re-transmitted.  
% e. PFSP = Number of sub-packet failures with time of failure  
% f. PFP = Number of packet failure with time of failure 
% g. PFU = Number of failed utilites Tx failure with time log of failure 
%  
function [PSDP,PSUP,PSB,PFP,PFU,PTO,CT] = PollingS(ST,SSpack,PPD,EL) 
  
%Ini Setup for function 
time = 0;   % Run time 
sctime = 0; % Start Cycle time 
nCycle = 0; % Number of cycle 
sCycle = 0; % Number of Successful Cycle 
maxCycletime = 0; % max time per cycle 
avgCycletime = 0; % Average time per cycle 
NEvent = 0; % Running number of Events 
PSDP = 0;   % Number of successful Data packet transmitted 
PSUP = 0;   % Number of successful Utilities packet transmitted 
PSB = 0 ;   % Number of Byte transmitted 
PFP = 0;    % Number of failed packet event 
PFU = 0;    % Number of failed Utility packet 
PTO = 0;    % Number of Time-Outs 
maxRetry = 1; % Number of retries before Time-out.  
N = SSpack(6); %Number of Nodes 
PDCount = 2; % Propagation Delay Counter 
ELU = EL(1); % Error Level of Utilities 
ELP = EL(2); % Error Level of Data Packet 
TUP = SSpack(3); 
TCPU = SSpack(4); 
TO = 1; % Additional delay 
state = 1; 
URC = 0; % Number of Utility Retries 
MaxUR = maxRetry; 
DropPackFlag = 0; % flagged if there's a dropped packet 
  
  
%Main Program 
  
while time <= ST 
    switch state 
  
        case 1  
            [time,B,NEvent] = PCnode2(time,ST,SSpack,PPD(PDCount),NEvent); 
            state = 2; 
         



 60

        case 2 
            PSUP = PSUP + 1; 
            PSB = PSB + B;               
            if AnyError(ELU) == true 
                state = 4; 
                PSB = PSB - B; 
                PFU = PFU + 1; 
                PSUP = PSUP - 1; 
                time = time + TCPU+PPD(PDCount)+TUP+TO; 
            else 
                state = 3; 
                [time,B,P,SP,U,NEvent] = PPnodeS(time,ST,SSpack,PPD(PDCount),NEvent); 
            end 
             
        case 3 
            if AnyError(ELP) == true 
                state = 5; 
                PFP = PFP+1; 
                DropPackFlag = 1; 
            else 
                PSB = PSB + B; 
                PSDP = PSDP + P; 
                PSUP = PSUP + U; 
                state =5; 
            end 
             
        case 4 
            if URC == MaxUR 
                state = 5;            
                PTO = PTO + 1; 
                PFP = PFP+1; 
                DropPackFlag = 1; 
            else 
                URC = URC + 1; 
                PFU= PFU+1; 
                state = 1; 
            end 
             
             
        case 5 
            if PDCount == N 
                PDCount = 2; 
                nCycle = nCycle + 1; 
                ctime = time - sctime; 
                sctime = time; % start of new cycle 
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                if ctime > maxCycletime 
                    maxCycletime = ctime; 
                end 
                if DropPackFlag ~= 1 
                    sCycle = sCycle+1; 
                end 
                avgCycletime = (time/nCycle); 
                DropPackFlag = 0; 
            else 
                PDCount = PDCount+1; 
            end             
            URC = 0; 
            state = 2; 
            [time,B,NEvent] = PCnode2(time,ST,SSpack,PPD(PDCount),NEvent); 
    end 
end 
  
CT = [avgCycletime,maxCycletime,nCycle,sCycle]; 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 

This function PPnode2 is used by Polling2.m function to clock the simulation run 

time and the communication traffic from the peripheral nodes to the central node. 

 
function [Clock,B,P,SP,U,NE] = PPnode2(Clock,ST,Pack,PPD,SRQ,SRQFlag,NE)  
  
B=0; 
P=0; 
SP = 0; 
U = 0; 
TCPUD = Pack(4); 
TDP = Pack(1); 
TDSP = Pack(2); 
TUP = Pack(3); 
DB = Pack(7); 
UB = Pack(8); 
SPB = Pack(11); 
  
Clock = Clock +TCPUD; 
if Clock < ST 
    Clock_S = Clock+TUP; 
    if Clock_S < ST 
        B = UB; 
        U = 1; 
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        if SRQFlag == 0 
            Clock_S = Clock_S+TDP;     
            if Clock_S < ST 
                B = B+DB; 
                P = 1; 
            else 
                B = B+DB-ceil((Clock_S-ST)/(TDP/DB)); 
            end 
        else 
            Clock_S = Clock_S+(TDSP*SRQ); 
            if Clock_S < ST 
                B = B+(SRQ*SPB); 
                SP = SRQ; 
                P = 1;            
            else 
                B = B+(SRQ*SPB) - ceil((Clock_S-ST)/((TDSP)/(SPB))); 
                SP = SRQ - ceil((Clock_S-ST)/TDSP); 
            end 
        end 
    else 
        B = UB - ceil((Clock_S-ST)/(TUP/UB)); 
    end 
    Clock = Clock_S+PPD; 
end 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

This function PPnodeS.m is used by PollingS.m function to clock the simulation 

run time and the communication traffic from the peripheral nodes to the central node. 

function [Clock,B,P,SP,U,NE] = PPnodeS(Clock,ST,Pack,PPD,NE)  
  
B=0; 
P=0; 
SP = 0; 
U = 0; 
TCPUD = Pack(4); 
TDP = Pack(1); 
TUP = Pack(3); 
DB = Pack(7); 
UB = Pack(8); 
  
Clock = Clock +TCPUD; 
if Clock < ST 
    Clock_S = Clock+TUP; 
    if Clock_S < ST 
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        B = UB; 
        U = 1; 
            Clock_S = Clock_S+TDP;     
            if Clock_S < ST 
                B = B+DB; 
                P = 1; 
            else 
                B = B+DB-ceil((Clock_S-ST)/(TDP/DB)); 
            end 
    else 
        B = UB - ceil((Clock_S-ST)/(TUP/UB)); 
    end 
    Clock = Clock_S+PPD; 
end 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

This function PCnode2.m is used by both Polling2.m and PollingS.m functions to 

clock the simulation run time and the communication traffic from the central to the 

peripheral node. 

 
function [Clock,B,NE] = PCnode2(Clock,S,Pack,PPD,NE) 
  
B=0; 
TCPUD = Pack(4); 
TUP = Pack(3); 
UB = Pack(8); 
  
Clock = Clock+TCPUD; 
if Clock < S 
    Clock_S = Clock+TUP; 
    if Clock_S > S 
        B = ceil((Clock_S - S)/(TUP/UB)); 
  
    else 
        B = UB; 
        Clock_S = Clock_S+PPD; 
    end 
    Clock = Clock_S; 
end 
 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
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The function TokenH.m is called in the seastarsim.m function and is used to 

simulate the token ring with SRQ protocol. 

% Function for <TokenH> uses the following input  
% a. ST = Simulation Time 
% b. SSpack(1) = TDP = Tx Time for a Data Packet 
% c. SSpack(2) = TDSP = Tx Time for a Data Sub-packet 
% d. SSpack(3) = TUP = Tx Time for a Utility packet 
% e. SSpack(4) = TCPUD = Delay time for modem CPU 
% f. SSpack(7) = DB = Number of Data bytes 
% g. SSpack(8) = UB = Number of Utility bytes 
% h. TDO = A array of Propagation delay between nodes in sequence 1 to N 
% i. SSpack(9) = TTP = Tx time for a token ring 
% k. SSpack(10) = RB = Number of Token Ring bytes.  
% 
% Output of <Token> will consist of the following 
% a. TSDP = Successful number of data packet 
% b. TSUP = Successful number of Utilities sign 
% c. TSB = Successful number of byte Tx.  
% d. TSPRT = Number of sub-packet re-transmitted.  
% e. TFSP = Number of sub-packet failure with time of failures 
% f. TFP = Number of packet failure with time of failures 
% g. TFU = Number of failed utilities Tx failures with time log of failure 
%  
function [TSDP,TSTP,TSB,TSPRT,TFP,TFSP,TFU,TTO,CT] = 
TokenH(ST,SSpack,TDO,EL) 
  
Log = []; 
  
%Ini Setup for Token function 
time = 0; %Run time 
sctime = 0; % Start cycle time 
NE = 0;     % Running Number of Events 
TSDP = 0;   % Number of successful Data packets transmitted 
TSTP = 0;   % Number of successful Token packets transmitted 
TSB = 0 ;   % Number of Bytes transmitted 
TSPRT = 0;  % Number of sub-packet retransmitted 
TFP = 0;    % Number of failed packet event 
TFSP =0;    % Number of failed sub-packet 
TFU = 0;    % Number of failed Utilities 
TTO = 0;    % Number of time-outs 
nCycle = 0; % Number of cycles 
sCycle = 0; 
avgCycletime = 0; % Average time per cycle 
maxCycletime = 0; % max time per cycle 
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maxSRQ = 16; 
maxRetry = 3;% Number of SRQ retries 
N = size(TDO,2); %Number of Nodes 
NCount = 2; % Counter for Node 
TCPU = SSpack(4); %CPU Wake-up time 
TDP = SSpack(1);  %Time for Tx of a data packet 
TTok = SSpack(9); % Time for Tx of a token 
TB = SSpack(10); % Number of Token Bytes 
TSPB = SSpack(11); % Number of Byte per subpacket 
Time_CP = TDO(2,:); % Matrix of time from central node to peripheral Node 
state = 1; 
TCompute = .3; %Central node CPU Computational time. 
TO = 1; %additional time-out wait 
ELU = EL(1); % Error Level of Utilities 
ELP = EL(2); % Error Level of Data Packet 
DropPackFlag = 0; % flagged if there's a dropped packet 
  
% Create a look-up matrix of transmission time for each node  
% consisting of propagation delay, Token, Full Data Tx, Delays 
  
TX_Table = zeros(4,N); 
TX_Table(1,:) = max(TDO,[],1); % Time taken to propagate to next node 
TX_Table(2,:) = TTok; % Time taken to transmit a token 
TX_Table(3,2:N) = TDP;  % Time take to transmit a data packet 
TX_Table(4,:) = TCPU; % Time take for CPU delay 
TX_Table(4,1) = TX_Table(4,1) + TCompute; % additional computational time for 
central node 
  
Tx_time = sum(TX_Table,1); 
  
Time_CP = Time_CP + TTok+TCPU; %Time taken to Tx a token from Central node to 
Peripheral node 
  
% Create an array of number of SRQ Required (if any) and set as zero 
  
N_SRQ = zeros(1,N); 
  
% Create a matrix of flags to indicate error occurrances during Token and Data Tx 
  
while time <= ST 
    switch state 
         
        case 1 
            [time,B,NE] = TCRing(time,ST,SSpack,Time_CP,Log,NE,NCount); 
            if AnyError(ELU) == true; 
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                state = 2; 
            else 
                state = 3; 
                TSTP = TSTP + 1; 
                TSB = TSB + B; 
            end 
         
        case 2 
            time = time + TDO(2,NCount) + TO;  
            N_SRQ(NCount) = maxSRQ; 
            NCount = NCount+1; 
            if NCount > N 
                state = 4; %Last node reached, go to error correction 
                NCount = 2; 
            else 
                state = 1; %Sent Token from CNode to next PNode 
            end 
             
        case 3 
            [time,B,P,SP,NE] = TPHRing(time,ST,SSpack,Tx_time,Log,NE,NCount); 
            if time > ST 
                TSDP = TSDP + P; 
                TSB = TSB + B; 
            else 
                if AnyError(ELP) == true %On Data Tx time 
                    N_SRQ(NCount) = ceil(random('unif',1,maxSRQ)); 
                    TSDP = TSDP - 1; 
                    TSB = TSB - (N_SRQ(NCount)*TSPB); 
                end 
                TSDP = TSDP + P; 
                TSB = TSB + B; 
                NCount = NCount + 1; 
                if NCount > N 
                    state = 4; %Last node reached, go to error correction 
                    NCount = 2; 
                else 
                    if AnyError(ELU) == true % On Token tx time 
                        state = 2; 
                        TSB = TSB - TB; 
                    else 
                        TSTP = TSTP + 1;                      
                        state = 3; 
                    end 
                end 
            end 
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        case 4 
            NSRQ = N_SRQ(NCount); 
            if NSRQ == 0 % No SRQ Required 
                NCount = NCount + 1; 
                if NCount > N 
                    state = 5; % Go to restart 
                else 
                    state = 4; 
                end 
            else 
                time = time + TCPU; 
                [time,TOFlag,B,SP] = 
ARQ(SSpack,TDO(2,NCount),NSRQ,maxRetry,time,EL); 
                if TOFlag ~= 0 
                    TFP = TFP + 1; 
                    TTO = TTO + 1; 
                    DropPackFlag = 1; 
                else 
                    TSDP = TSDP + 1; 
                    TSB = TSB + B; 
                    TSPRT = TSPRT + SP; 
                end 
                NCount = NCount + 1; 
                if NCount > N 
                    state = 5; %Go to restart 
                else 
                    state = 4; 
                end 
            end 
        
        case 5 
            NCount = 2; 
            nCycle = nCycle + 1; 
            ctime = time - sctime; 
            sctime = time; % start a new cycle 
            if ctime > maxCycletime 
                maxCycletime = ctime; 
            end 
            if DropPackFlag ~= 1 
                sCycle = sCycle +1; 
            end 
            avgCycletime = (time/nCycle); 
            DropPackFlag = 0; 
            N_SRQ = zeros(1,N); 
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            state = 1; 
    end 
end 
  
CT = [avgCycletime,maxCycletime,nCycle,sCycle]; 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

This function TokenS.m is called in the seastarsim.m function and is to simulate 

the token ring without SRQ.  

 
% Function for <TokenS> uses the following input  
% a. ST = Simulation Time 
% b. SSpack(1) = TDP = Tx Time for a Data Packet 
% c. SSpack(2) = TDSP = Tx Time for a Data Sub-packet 
% d. SSpack(3) = TUP = Tx Time for a Utility packet 
% e. SSpack(4) = TCPUD = Delay time for modem CPU 
% f. SSpack(7) = DB = Number of Data bytes 
% g. SSpack(8) = UB = Number of Utility bytes 
% h. TDO = an array of Propagation delay between nodes in sequence 1 to N 
% i. SSpack(9) = TTP = Tx time for a token ring 
% k. SSpack(10) = RB = Number of Token Ring bytes.  
% 
% Output of <Token> will consist of the following: 
% a. TSDP = Successful number of data packets 
% b. TSUP = Successful number of Utilities sign 
% c. TSB = Successful number of byte Tx.  
% d. TSPRT = Number of sub-packets re-transmitted.  
% e. TFSP = Number of sub-packets failure. with time of failure  
% f. TFP = Number of packets failure with time of failure 
% g. TFU = Number of failed utility Tx failures with time log of failure 
%  
function [TSDP,TSTP,TSB,TFP,TFU,CT] = TokenS(ST,SSpack,TDO,EL) 
  
%Ini Setup for Token function 
time = 0; %Run time 
sctime = 0; % Start cycle time 
TErrorFlag = 0; % Token Error Flag 
NE = 0;     % Running Number of Events 
TSDP = 0;   % Number of successful Data packets transmitted 
TSTP = 0;   % Number of successful Token packets transmitted 
TSB = 0 ;   % Number of Byte transmitted 
TFP = 0;    % Number of failed packets event 
TFU = 0;    % Number of failed Utility packet 
nCycle = 0; % Number of cycle 
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sCycle = 0; % Number of Successful Cycle 
avgCycletime = 0; % Average time per cycle 
maxCycletime = 0; % max time per cycle 
N = size(TDO,2); %Number of Nodes 
NCount = 2; % Counter for Node 
TCPU = SSpack(4); %CPU Wake up time 
TDP = SSpack(1);  %Time for Tx a data packets 
TTok = SSpack(9); % Time for Tx a token 
TB = SSpack(10); % Number of Token Bytes 
TDPB = SSpack(7); % Number of Bytes per subpackets 
Time_CP = TDO(2,:); % Matrix of time from central node to Peripheral Node 
state = 1; 
TCompute = .3; %Central node CPU Computational time. 
TO = 1; %additional time-out wait 
ELU = EL(1); % Error Level of Utilities 
ELP = EL(2); % Error Level of Data Packet 
DropPackFlag = 0; % flaged if there's a dropped packet 
  
% Create a look up matrix of transmission time for each node  
% consisting of propagation delay, Token, Full Data Tx, Delays 
  
TX_Table = zeros(4,N); 
TX_Table(1,:) = max(TDO,[],1); % Time taken to propagate to next node 
TX_Table(2,:) = TTok; % Time taken to transmit a token 
TX_Table(3,2:N) = TDP;  % Time take to transmit a data packets 
TX_Table(4,:) = TCPU; % Time take for CPU delay 
TX_Table(4,1) = TX_Table(4,1) + TCompute; % additional computational time for 
central node 
  
Tx_time = sum(TX_Table,1); 
  
Time_CP = Time_CP + TTok+TCPU; %Time taken to Tx a token from Central node to 
Peripheral node 
  
% Create an array of number of SQR Required (if any) and set as zero 
  
  
% Create a matrix of flag to indicate error occurances during Token and Data Tx 
  
while time <= ST 
    switch state 
         
        case 1 
            [time,B,NE] = TCRing(time,ST,SSpack,Time_CP,Log,NE,NCount); 
            if AnyError(ELU) == true; 
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                state = 2; 
                TFU = TFU + 1; 
                DropPackFlag = 1; 
            else 
                state = 3; 
                TSTP = TSTP + 1; 
                TSB = TSB + B; 
            end 
         
        case 2 
            time = time + TDO(2,NCount) + TO;  
            TFP = TFP + 1; 
            NCount = NCount+1; 
            if NCount > N 
                state = 4; %Last node reached 
                NCount = 2; 
            else 
                state = 1; %Sent Token from CNode to next PNode 
            end 
             
        case 3 
            [time,B,P,SP,NE] = TPHRing(time,ST,SSpack,Tx_time,Log,NE,NCount); 
            if time > ST 
                TSDP = TSDP + P; 
                TSB = TSB + B; 
            else 
                if AnyError(ELP) == true %On Data Tx time 
                    TSDP = TSDP - 1; 
                    TSB = TSB - TDPB; 
                    DropPackFlag = 1; 
                end 
                TSDP = TSDP + P; 
                TSB = TSB + B; 
                NCount = NCount+1; 
                if AnyError(ELU) == true % On Token Tx time 
                    TFU = TFU+1; 
                    DropPackFlag = 1; 
                    if NCount > N 
                        state = 4; 
                        TErrorFlag = 1; 
                    else 
                        state = 2; 
                    end 
                    TSB = TSB - TB; 
                else 
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                    if NCount > N 
                        state = 4; 
                    else 
                        state = 3; 
                        TSTP = TSTP +1; 
                    end 
                end 
            end 
             
        case 4 
            NCount = 2; 
            nCycle = nCycle + 1; 
            ctime = time - sctime; 
            sctime = time; % start a new cycle 
            if ctime > maxCycletime 
                maxCycletime = ctime; 
            end 
            if DropPackFlag ~= 1 
                    sCycle = sCycle+1; 
            end 
            avgCycletime = (time/nCycle); 
            DropPackFlag = 0; 
            if TErrorFlag == 1 
                state = 2; 
                TErrorFlag = 0; 
            else 
                state = 3; 
            end 
    end 
end 
  
CT = [avgCycletime,maxCycletime,nCycle,sCycle]; 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

This function TPHRing.m is used by both the TokenH.m and TokenS.m function 

to clock the simulation time and the communication traffic between each peripheral 

nodes.  

 
function [Clock,B,P,SP,NE] = TPHRing(Clock,ST,Pack,Tx,Log,NE,NC)  
  
B=0; 
P=0; 
SP = 0; 
TCPUD = Pack(4); 
TDP = Pack(1); 
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TTP = Pack(9); 
DB = Pack(7); 
RB = Pack(10); 
state = 1; 
Endstate = 0; 
  
Clock_S = Clock +TCPUD; 
while Endstate == 0 
    switch state 
         
        case 1 
            Clock_S = Clock + TDP; 
            if Clock_S > ST 
                B = B+floor((ST - Clock)/(TDP/DB)); 
                state = 4; %End State 
            else 
                B = B+DB; 
                P = P+1; 
                state = 2; 
            end 
         
        case 2 
            Clock_S = Clock_S+TTP; 
            if Clock_S > ST 
                B = floor((ST-Clock)/(TTP/RB)); 
                state = 4; 
            else 
                B = B+RB; 
                state = 3; 
            end 
         
        case 3 
            Clock = Clock+Tx(NC)-TCPUD; 
            Endstate = 1; 
             
        case 4 
            Clock = Clock_S; 
            Endstate = 1; 
    end 
end 
  
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
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This function TCRing.m is used by both the TokenH.m and TokenS.m function to 

clock the simulation time and the communication traffic between the central node and the  

peripheral nodes.  

 
function [Clock,B,NE] = TCRing(Clock,S,Pack,Tk,Log,NE,NC) 
  
B=0; 
TCPUD = Pack(4); 
TTP = Pack(9); 
RB = Pack(10); 
  
Clock = Clock+TCPUD; 
if Clock < S 
    Clock_S = Clock+TTP; 
    if Clock_S > S 
        B = floor((S - Clock)/(TTP/RB)); 
    else 
        B = RB; 
    end 
    Clock = Clock + Tk(NC); 
end 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

This function ARQ.m is used by the function TokenH.m to generate SRQ events 

when the token returns to the central node after each cycle.  

%This function take in the following 
%Spack contains the necessary information.  
%SPack(2) = TimeDSP = Tx time per data sub-packets 
%Spack(3) = TimeUtil = Tx time per utilities packets 
%Spack(4) = TCPU = CPU wake-up and computation time 
%Spack(10) = UB = No. of Utilities bytes 
%Spack(11) = SB = No. of Sub-packets bytes 
%TimeDelay = Propagation delay between the two nodes 
%NSRQ = Number of SRQ packets required 
%time = run time clock 
% 
% The function returns the following 
%TOFlag = Time-Out Flag 
%B = Number of byte successfully transmitted 
%SP = Number of sub-packet successfully transmitted 
function [time,TOFlag,B,SP] = ARQ(Spack,TimeDelay,NSRQ,MaxTry,time,EL) 
  
TimeDSP = Spack(2); 
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TimeUtil = Spack(3); 
TCPU = Spack(4); 
UB = Spack(10); 
SB = Spack(11); 
Try = 1; 
TOFlag = 0; 
Endflag = 0; 
B = 0; 
SP = 0; 
state = 1; 
ELU = EL(1); % Error Level of Utilities 
ELP = EL(2); % Error Level of Data Packet 
  
while Endflag < 1  
    switch state 
         
        case 1 
            %Send SRQ to Pnode 
            time = time + TimeUtil + TimeDelay; 
            if AnyError(ELU) == true; 
                time = time + TimeDelay + TCPU + (TimeDSP*NSRQ); %Wait time for data 
return 
                Try = Try + 1; 
                if Try > MaxTry 
                    state = 4; 
                else 
                    state = 1; 
                end 
            else 
                B = B + UB; 
                state = 2; 
            end 
             
        case 2 %Send Data to Cnode 
            time = time + (TimeDSP*NSRQ) + TCPU + TimeDelay; 
            if AnyError(ELP) == true; 
                Try = Try + 1; 
                if Try > MaxTry 
                    state = 4; 
                else 
                    PNSRQ = NSRQ; 
                    NSRQ = ceil(random('unif',1,NSRQ)); 
                    B = B + (PNSRQ - NSRQ)*SB; 
                    SP = SP + PNSRQ - NSRQ; 
                    state = 1; 
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                end 
            else 
                B = B + (NSRQ*SB); 
                SP = SP + NSRQ; 
                state = 3; 
            end 
             
        case 3 
            Endflag = 1; 
             
        case 4 
            TOFlag = 1; 
            Endflag = 1; 
    end 
end 
  
                 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

This function AnyError.m will return a logic True when the random uniform 

generator exceed the EL level. It is used to generate the error inthe program.  

 
function [AE] = AnyError(EL) 
  
AE = EL > random('unif',0,1); 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

The function of seastarsim.m is to run the same set of input through the four 

different protocols and collect the result for analysis 

 
function [Result] = seastarsim(SR,STH,NoNode,NGPos,EL) 
  
[SSpack] = iniSeaStar; 
SSpack(6) = NoNode; 
NPos = NGPos;  
  
% Call a function <GridNode> with a given matrix input of the  
% node position and convert it into a grid of 1000m by 1000m.  
% Output of the function <MapNode> will consist of the grid position of 
% the node and the distance between all the nodes.  
  
NGrid = GridNode(SSpack(6),NPos); 
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% Call a function <Proptime> with input consisiting of output of MapNode  
% and sound speed in order to calculate the propagation delay between the 
% nodes.  
% Output of the function <Proptime> will consist of the grid position of 
% the node and the propagation time delay between the nodes.  
  
TPropDelay = PropTime(SSpack(6),SSpack(5),NGrid); 
  
% Call function <TkRing> with input of TProgDelay and Number of nodes and 
% output the order that will minimize the delay.  
[TRorder,TRDelayOrder] = TkRing(TPropDelay,SSpack(6)); 
  
%Obtain the Propagation delay for Polling  
PPropDelay = TPropDelay(3,:); 
  
% Set simulation time <SimTime> in Hours 
SimTimeHours = STH; 
  
%Convert SimTime to seconds 
SimTime = SimTimeHours*3600; 
  
% Load number of simulation 
Simrun = SR; 
Prun = zeros(Simrun,12); 
PSrun = zeros(Simrun,10); 
Trun = zeros(Simrun,12); 
TSrun = zeros(Simrun,9); 
  
% Run simulation for <Polling> for the above initialization and noise. 
  
for i = 1:Simrun 
    [PsSDP,PsSUP,PsSB,PsFP,PsFU,PsTO,CT] = PollingS(SimTime,SSpack,... 
        PPropDelay,EL); 
     
    PSrun(i,:) = [PsSDP,PsSUP,PsSB,PsFP,PsFU,PsTO,CT]; 
     
    [PSDP,PSUP,PSB,PSPRT,PFP,PFSP,PFU,PTO,CT] = Polling2(SimTime,SSpack,... 
        PPropDelay,EL); 
     
    Prun(i,:) = [PSDP,PSUP,PSB,PSPRT,PFP,PFSP,PFU,PTO,CT]; 
     
  
% Run simulation for <TokenH> for the above initialization and noise. 
  
[TSDP,TSTP,TSB,TSPRT,TFP,TFSP,TFU,TTO,CT] = 
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TokenH(SimTime,SSpack,TRDelayOrder,EL); 
  
 Trun(i,:) = [TSDP,TSTP,TSB,TSPRT,TFP,TFSP,TFU,TTO,CT]; 
  
% Run Simulation for <TokenS> as simple Token ring format  
 [STSDP,STSTP,STSB,STFP,STFU,CT] = 
TokenS(SimTime,SSpack,TRDelayOrder,EL); 
  
 TSrun(i,:) = [STSDP,STSTP,STSB,STFP,STFU,CT]; 
  
end 
  
% Generate a summary. 
  
Result = zeros(4,14); 
  
% Polling Simple Run 
SumPSrun = sum(PSrun,1); 
MaxPSrun = max(PSrun,[],1); 
MinPSrun = min(PSrun,[],1); 
PSAvgTimePerCycle = SumPSrun(7)/Simrun; 
PSMinAvgTimePerCycle = MinPSrun(7); 
PSMaxAvgTimePerCycle = MaxPSrun(7); 
PSAvgMaxTimePerCycle = SumPSrun(8)/Simrun; 
PSMinAMaxTimePerCycle = MinPSrun(8); 
PSMaxAMaxTimePerCycle = MaxPSrun(8); 
  
ThroughPut_PSPacket = (SumPSrun(1)*3600/(SimTime*Simrun))*24; %packets/day 
ThroughPut_PSData = (SSpack(12)*SumPSrun(1))/(SimTime*Simrun); %byte/sec 
ThroughPut_PSUtil = (SSpack(8)*SumPSrun(2))/(SimTime*Simrun); %byte/sec 
Total_PSByte = SumPSrun(3); 
  
Dropped_PSData = SSpack(7)*SumPSrun(4)/Simrun; 
Dropped_PSPData = (SumPSrun(4)*3600/(SimTime*Simrun))*24; 
  
Channel_PSData = (ThroughPut_PSData/SSpack(13))*100; % % of Channel Utilization  
  
nCycle_PS = (SumPSrun(9)*3600/(SimTime*Simrun))*24; %Total Cycles/day 
sCycle_PS = (SumPSrun(10)*3600/(SimTime*Simrun))*24; % Total Successful 
Cycles/day 
  
  
Result(1,:) = 
[PSAvgTimePerCycle,PSMinAvgTimePerCycle,PSMaxAvgTimePerCycle,... 
    PSAvgMaxTimePerCycle,PSMinAMaxTimePerCycle,PSMaxAMaxTimePerCycle,... 
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    ThroughPut_PSPacket,ThroughPut_PSData,ThroughPut_PSUtil,Dropped_PSPData,... 
    Total_PSByte,Channel_PSData,nCycle_PS,sCycle_PS]; 
  
% Polling with SRQ Run 
SumPrun = sum(Prun,1); 
MaxPrun = max(Prun,[],1); 
MinPrun = min(Prun,[],1); 
PAvgTimePerCycle = SumPrun(9)/Simrun; 
PMinAvgTimePerCycle = MinPrun(9); 
PMaxAvgTimePerCycle = MaxPrun(9); 
PAvgMaxTimePerCycle = SumPrun(10)/Simrun; 
PMinAMaxTimePerCycle = MinPrun(10); 
PMaxAMaxTimePerCycle = MaxPrun(10); 
  
ThroughPut_PPacket = (SumPrun(1)*3600/(SimTime*Simrun))*24; %packets/day 
ThroughPut_PData = (SSpack(12)*SumPrun(1))/(SimTime*Simrun); 
ThroughPut_PUtil = (SSpack(8)*SumPrun(2))/(SimTime*Simrun); 
Total_PByte = SumPrun(3); 
  
Dropped_PData = SSpack(7)*SumPrun(8)/Simrun; 
Dropped_PPData =(SumPrun(8)*3600/(SimTime*Simrun))*24; 
  
Channel_PData = (ThroughPut_PData/SSpack(13))*100; % % of Channel Utilization  
  
nCycle_P = (SumPrun(11)*3600/(SimTime*Simrun))*24; %Total Cycles/day 
sCycle_P = (SumPrun(12)*3600/(SimTime*Simrun))*24; % Total Successful Cycles/day 
  
Result(2,:) = [PAvgTimePerCycle,PMinAvgTimePerCycle,PMaxAvgTimePerCycle,... 
    PAvgMaxTimePerCycle,PMinAMaxTimePerCycle,PMaxAMaxTimePerCycle,... 
    ThroughPut_PPacket,ThroughPut_PData,ThroughPut_PUtil,Dropped_PPData,... 
    Total_PByte,Channel_PData,nCycle_P,sCycle_P]; 
  
% Token Simple run 
SumSTrun = sum(TSrun,1); 
MaxSTrun = max(TSrun,[],1); 
MinSTrun = min(TSrun,[],1); 
STAvgTimePerCycle = SumSTrun(6)/Simrun; 
STMinAvgTimePerCycle = MinSTrun(6); 
STMaxAvgTimePerCycle = MaxSTrun(6); 
STAvgMaxTimePerCycle = SumSTrun(7)/Simrun; 
STMinAMaxTimePerCycle = MinSTrun(7); 
STMaxAMaxTimePerCycle = MaxSTrun(7); 
  
ThroughPut_STPacket = (SumSTrun(1)*3600/(SimTime*Simrun))*24; %packets/day 
ThroughPut_STData = (SSpack(12)*SumSTrun(1))/(SimTime*Simrun); 
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ThroughPut_STUtil = (SSpack(8)*SumSTrun(2))/(SimTime*Simrun); 
Total_STByte = SumSTrun(3); 
  
Dropped_STData = SSpack(7)*SumSTrun(4)/Simrun; 
Dropped_STPData = (SumSTrun(4)*3600/(SimTime*Simrun))*24; 
  
Channel_STData = (ThroughPut_STData/SSpack(13))*100; % % of Channel Utilization  
  
nCycle_ST = (SumSTrun(8)*3600/(SimTime*Simrun))*24; %Total Cycles/day 
sCycle_ST = (SumSTrun(9)*3600/(SimTime*Simrun))*24; % Total Successful 
Cycles/day 
  
Result(3,:) = 
[STAvgTimePerCycle,STMinAvgTimePerCycle,STMaxAvgTimePerCycle,... 
    STAvgMaxTimePerCycle,STMinAMaxTimePerCycle,STMaxAMaxTimePerCycle,... 
    ThroughPut_STPacket,ThroughPut_STData,ThroughPut_STUtil,Dropped_STPData,... 
    Total_STByte,Channel_STData,nCycle_ST,sCycle_ST]; 
 
% Token with SRQ run 
SumTrun = sum(Trun,1); 
MaxTrun = max(Trun,[],1); 
MinTrun = min(Trun,[],1); 
TAvgTimePerCycle = SumTrun(9)/Simrun; 
TMinAvgTimePerCycle = MinTrun(9); 
TMaxAvgTimePerCycle = MaxTrun(9); 
TAvgMaxTimePerCycle = SumTrun(10)/Simrun; 
TMinAMaxTimePerCycle = MinTrun(10); 
TMaxAMaxTimePerCycle = MaxTrun(10); 
  
ThroughPut_TPacket = (SumTrun(1)*3600/(SimTime*Simrun))*24; %packets/day 
ThroughPut_TData = (SSpack(12)*SumTrun(1))/(SimTime*Simrun); 
ThroughPut_TUtil = (SSpack(8)*SumTrun(2))/(SimTime*Simrun); 
Total_TByte = SumTrun(3); 
  
Dropped_TData = SSpack(7)*SumTrun(8)/Simrun; 
Dropped_TPData = (SumTrun(8)*3600/(SimTime*Simrun))*24; 
  
Channel_TData = (ThroughPut_TData/SSpack(13))*100; % % of Channel Utilization  
  
nCycle_T = (SumTrun(11)*3600/(SimTime*Simrun))*24; %Total Cycles/day 
sCycle_T = (SumTrun(12)*3600/(SimTime*Simrun))*24; % Total Success Cycles/day 
  
Result(4,:) = [TAvgTimePerCycle,TMinAvgTimePerCycle,TMaxAvgTimePerCycle,... 
    TAvgMaxTimePerCycle,TMinAMaxTimePerCycle,TMaxAMaxTimePerCycle,... 
    ThroughPut_TPacket,ThroughPut_TData,ThroughPut_TUtil,Dropped_TPData,... 
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    Total_TByte,Channel_TData,nCycle_T,sCycle_T]; 
  
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

This function iniGrid.m is called in the SeaStarWNodesSim main prgram to 

initialize the grid layout of nodes.  

function [Linear,Circle] = iniGrid 
  
Linear = cell(7,1); 
Circle = cell(7,1); 
  
Linear{1} = [0,250,500;0,0,0]; 
Linear{2} = [0,167,333,500;0,0,0,0]; 
Linear{3} = [0,125,250,375,500;0,0,0,0,0]; 
Linear{4} = [0,100,200,300,400,500;0,0,0,0,0,0]; 
Linear{5} = [0,-500,-333,-167,167,333,500;0,0,0,0,0,0,0]; 
Linear{6} = [0,-500,-333,-167,125,250,375,500;0,0,0,0,0,0,0,0]; 
Linear{7} = [0,-500,-375,-250,-125,125,250,375,500;0,0,0,0,0,0,0,0,0]; 
 
Circle{1} = [0,217,-217;0,450,450]; 
Circle{2} = [0,0,250,-250;0,289,-144,-144]; 
Circle{3} = [0,0,354,0,-354;0,354,0,-354,0]; 
Circle{4} = [0,0,405,250,-250,-405;0,425,131,-344,-344,131]; 
Circle{5} = [0,250,500,250,-250,-500,-250;0,433,0,-433,-433,0,433]; 
Circle{6} = [0,0,391,487,217,-217,-487,-391;0,500,312,-111,-450,-450,-111,312]; 
Circle{7} = [0,0,354,500,354,0,-354,-500,-354;0,500,354,0,-354,-500,-354,0,354]; 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 

 This is a one of two main program name SeaStarWNodesSim to compute 

collect the data for 3 to 9 number of nodes. 

% This program gives seastarsim.m two different geometrical layout and a set of number 
of nodes to simulate 
 
clear 
  
SimTimeHours = 6; 
Simrun = 150; 
ErrorL = [0.0005,0.2]; 
  
[Lin,Cir] = iniGrid; 
  
Count = size(Lin,1); 
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CPS = zeros(Count,14); 
CPH = zeros(Count,14); 
CTS = zeros(Count,14); 
CTH = zeros(Count,14); 
LPS = zeros(Count,14); 
LPH = zeros(Count,14); 
LTS = zeros(Count,14); 
LTH = zeros(Count,14); 
  
  
for a = 1:Count 
    xy = Cir{a}; 
    N = size(xy,2); 
    [Return] = seastarsim(Simrun,SimTimeHours,N,xy,ErrorL); 
    CPS(a,:) = Return(1,:); 
    CPH(a,:) = Return(2,:); 
    CTS(a,:) = Return(3,:); 
    CTH(a,:) = Return(4,:); 
    xyl = Lin{a}; 
    NL = size(xyl,2); 
    [Return] = seastarsim(Simrun,SimTimeHours,NL,xyl,ErrorL); 
    LPS(a,:) = Return(1,:); 
    LPH(a,:) = Return(2,:); 
    LTS(a,:) = Return(3,:); 
    LTH(a,:) = Return(4,:); 
     
end 
 
NN = 3:9; 
 
figure(1) 
plot(NN,CPS(:,1),'co-'); 
hold on 
plot(NN,CPH(:,1),'bx-'); 
plot(NN,CTS(:,1),'g+-'); 
plot(NN,CTH(:,1),'m*-'); 
plot(NN,LPS(:,1),'co-.'); 
plot(NN,LPH(:,1),'bx-.'); 
plot(NN,LTS(:,1),'g+-.'); 
plot(NN,LTH(:,1),'m*-.'); 
hold off 
xlabel('Number of Nodes');ylabel('Time (sec)');title('Average Time Per Cycle vs Number 
of Nodes @ EL = 0.2'); 
legend('C. Polling','C. Polling with SRQ','C. Token',... 
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    'C. Token with SRQ','L. Polling','L. Polling with SRQ',... 
    'L. Token','L. Token with SRQ','Location','NorthWest'); 
  
figure(2) 
plot(NN,CPS(:,4),'co-'); 
hold on 
plot(NN,CPH(:,4),'bx-'); 
plot(NN,CTS(:,4),'g+-'); 
plot(NN,CTH(:,4),'m*-'); 
plot(NN,LPS(:,4),'co-.'); 
plot(NN,LPH(:,4),'bx-.'); 
plot(NN,LTS(:,4),'g+-.'); 
plot(NN,LTH(:,4),'m*-.'); 
hold off 
xlabel('Number of Nodes');ylabel('Time (sec)');title('Max Time Per Cycle vs Number of 
Nodes @ EL = 0.2'); 
legend('C. Polling','C. Polling with SRQ','C. Token',... 
    'C. Token with SRQ','L. Polling','L. Polling with SRQ',... 
    'L. Token','L. Token with SRQ','Location','NorthWest'); 
  
figure(3) 
plot(NN,CPS(:,7),'co-'); 
hold on 
plot(NN,CPH(:,7),'bx-'); 
plot(NN,CTS(:,7),'g+-'); 
plot(NN,CTH(:,7),'m*-'); 
plot(NN,LPS(:,7),'co-.'); 
plot(NN,LPH(:,7),'bx-.'); 
plot(NN,LTS(:,7),'g+-.'); 
plot(NN,LTH(:,7),'m*-.'); 
hold off 
xlabel('Number of Nodes');ylabel('Number of Packet (per day)');title('Throughput for 
Packet vs Number of Nodes @ EL = 0.2'); 
legend('C. Polling','C. Polling with SRQ','C. Token',... 
    'C. Token with SRQ','L. Polling','L. Polling with SRQ',... 
    'L. Token','L. Token with SRQ','Location','Best'); 
  
figure(4) 
plot(NN,CPS(:,8),'co-'); 
hold on 
plot(NN,CPH(:,8),'bx-'); 
plot(NN,CTS(:,8),'g+-'); 
plot(NN,CTH(:,8),'m*-'); 
plot(NN,LPS(:,8),'co-.'); 
plot(NN,LPH(:,8),'bx-.'); 
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plot(NN,LTS(:,8),'g+-.'); 
plot(NN,LTH(:,8),'m*-.'); 
hold off 
xlabel('Number of Nodes');ylabel('Number of Data Byte Per Sec');title('Throughput Data 
vs Number of Nodes @ EL = 0.2'); 
legend('C. Polling','C. Polling with SRQ','C. Token',... 
    'C. Token with SRQ','L. Polling','L. Polling with SRQ',... 
    'L. Token','L. Token with SRQ','Location','Best'); 
  
figure(5) 
plot(NN,CPS(:,10),'co-'); 
hold on 
plot(NN,CPH(:,10),'bx-'); 
plot(NN,CTS(:,10),'g+-'); 
plot(NN,CTH(:,10),'m*-'); 
plot(NN,LPS(:,10),'co-.'); 
plot(NN,LPH(:,10),'bx-.'); 
plot(NN,LTS(:,10),'g+-.'); 
plot(NN,LTH(:,10),'m*-.'); 
hold off 
xlabel('Number of Nodes');ylabel('Number of Dropped packet (per day)');title('Dropped 
Data vs Number of Nodes @ EL = 0.2'); 
legend('C. Polling','C. Polling with SRQ','C. Token',... 
    'C. Token with SRQ','L. Polling','L. Polling with SRQ',... 
    'L. Token','L. Token with SRQ','Location','East'); 
  
  
  
figure(6) 
plot(NN,CPS(:,12),'co-'); 
hold on 
plot(NN,CPH(:,12),'bx-'); 
plot(NN,CTS(:,12),'g+-'); 
plot(NN,CTH(:,12),'m*-'); 
plot(NN,LPS(:,12),'co-.'); 
plot(NN,LPH(:,12),'bx-.'); 
plot(NN,LTS(:,12),'g+-.'); 
plot(NN,LTH(:,12),'m*-.'); 
hold off 
xlabel('Number of Nodes');ylabel('Channel Utilization Rate (%)'); 
title('Channel Utilization Rate vs Number of Nodes @ EL = 0.2'); 
legend('C. Polling','C. Polling with SRQ','C. Token',... 
    'C. Token with SRQ','L. Polling','L. Polling with SRQ',... 
    'L. Token','L. Token with SRQ','Location','Best'); 
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figure(7) 
plot(NN,CPS(:,14),'co-'); 
hold on 
plot(NN,CPH(:,14),'bx-'); 
plot(NN,CTS(:,14),'g+-'); 
plot(NN,CTH(:,14),'m*-'); 
plot(NN,LPS(:,14),'co-.'); 
plot(NN,LPH(:,14),'bx-.'); 
plot(NN,LTS(:,14),'g+-.'); 
plot(NN,LTH(:,14),'m*-.'); 
hold off 
xlabel('Number of Nodes');ylabel('Cycle (per day'); 
title('Error Free Cycle vs Number of Nodes @ EL = 0.2'); 
legend('C. Polling','C. Polling with SRQ','C. Token',... 
    'C. Token with SRQ','L. Polling','L. Polling with SRQ',... 
    'L. Token','L. Token with SRQ','Location','NorthEast'); 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 

This is the second of two main program named SeaStarWError which is used to 

measure the varying degree of error rate for a 7 nodes network. 

 
% This program gives seastarsim.m a error level set to run 
clear 
  
SimTimeHours = 6; 
Simrun = 100; 
ELP = [0,0.05,0.1,0.2,0.4,0.6,0.8]; %Error Lvl of Data Packet 
ELU = ELP./400; %Error lvl of Util packet 
  
% 6 peripheral nodes circle 
xy = [0,0,0,433,-433,433,-433; 
    0,500,-500,250,250,-250,-250]; 
N = size(xy,2); 
  
% Other ini 
b = size(ELP,2); 
CPS = zeros(b,14); 
CPH = zeros(b,14); 
CTS = zeros(b,14); 
CTH = zeros(b,14); 
  
  
for a = 1:b 
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    ErrorL = [ELU(a),ELP(a)]; 
    [Return] = seastarsim(Simrun,SimTimeHours,N,xy,ErrorL); 
    CPS(a,:) = Return(1,:); 
    CPH(a,:) = Return(2,:); 
    CTS(a,:) = Return(3,:); 
    CTH(a,:) = Return(4,:); 
end 
  
figure(1) 
plot(ELP,CPS(:,1),'co-'); 
hold on 
plot(ELP,CPH(:,1),'bx-'); 
plot(ELP,CTS(:,1),'g+-'); 
plot(ELP,CTH(:,1),'m*-'); 
hold off 
xlabel('Error Level');ylabel('Time (sec)');title('Average Time Per Cycle vs Error Rate'); 
legend('Polling','Polling with SRQ','Token',... 
    'Token with SRQ','Location','NorthWest'); 
xlim([0,0.8]); 
  
figure(2) 
plot(ELP,CPS(:,4),'co-'); 
hold on 
plot(ELP,CPH(:,4),'bx-'); 
plot(ELP,CTS(:,4),'g+-'); 
plot(ELP,CTH(:,4),'m*-'); 
hold off 
xlabel('Error Level');ylabel('Time (sec)');title('Max Time Per Cycle vs Error Rate'); 
legend('Polling','Polling with SRQ','Token',... 
    'Token with SRQ','Location','NorthWest'); 
xlim([0,0.8]); 
  
figure(3) 
plot(ELP,CPS(:,7),'co-'); 
hold on 
plot(ELP,CPH(:,7),'bx-'); 
plot(ELP,CTS(:,7),'g+-'); 
plot(ELP,CTH(:,7),'m*-'); 
hold off 
xlabel('Error Level');ylabel('Number of Packet (per day)');title('Throughput for Packet vs 
Error Rate'); 
legend('Polling','Polling with SRQ','Token',... 
    'Token with SRQ','Location','NorthEast'); 
xlim([0,0.8]); 
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figure(4) 
plot(ELP,CPS(:,8),'co-'); 
hold on 
plot(ELP,CPH(:,8),'bx-'); 
plot(ELP,CTS(:,8),'g+-'); 
plot(ELP,CTH(:,8),'m*-'); 
hold off 
xlabel('Error Level');ylabel('Number of Data Byte Per Sec');title('Throughput Data vs 
Error Rate'); 
legend('Polling','Polling with SRQ','Token',... 
    'Token with SRQ','Location','NorthEast'); 
xlim([0,0.8]); 
  
figure(5) 
plot(ELP,CPS(:,10),'co-'); 
hold on 
plot(ELP,CPH(:,10),'bx-'); 
plot(ELP,CTS(:,10),'g+-'); 
plot(ELP,CTH(:,10),'m*-'); 
hold off 
xlabel('Error Level');ylabel('Number of Dropped packet (per day)');title('Dropped Data vs 
Error Rate'); 
legend('Polling','Polling with SRQ','Token',... 
    'Token with SRQ','Location','NorthWest'); 
xlim([0,0.8]); 
  
figure(6) 
plot(ELP,CPS(:,12),'co-'); 
hold on 
plot(ELP,CPH(:,12),'bx-'); 
plot(ELP,CTS(:,12),'g+-'); 
plot(ELP,CTH(:,12),'m*-'); 
hold off 
xlabel('Error Level');ylabel('Channel Utilization Rate (%)'); 
title('Channel Utilization Rate vs Error Rate'); 
legend('Polling','Polling with SRQ','Token',... 
    'Token with SRQ','Location','NorthEast'); 
xlim([0,0.8]);%ylim([0,100]); 
  
figure(7) 
plot(ELP,CPS(:,14),'co-'); 
hold on 
plot(ELP,CPH(:,14),'bx-'); 
plot(ELP,CTS(:,14),'g+-'); 
plot(ELP,CTH(:,14),'m*-'); 
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hold off 
xlabel('Error Level');ylabel('Cycle (per day)'); 
title('Error Free Cycle vs Error Rate'); 
legend('Polling','Polling with SRQ','Token',... 
    'Token with SRQ','Location','NorthEast'); 
xlim([0,0.8]); 
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